Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add information regarding performance gains and dipole polarization to cylindrical extraction-efficiency tutorial #2815

Merged
merged 2 commits into from
Apr 3, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 4 additions & 0 deletions doc/docs/Python_Tutorials/Near_to_Far_Field_Spectra.md
Original file line number Diff line number Diff line change
Expand Up @@ -660,6 +660,10 @@ if __name__ == "__main__":

[Tutorial/Radiation Pattern of a Disc in Cylindrical Coordinates](Near_to_Far_Field_Spectra.md#radiation-pattern-of-a-disc-in-cylindrical-coordinates) demonstrated the procedure for computing the radiation pattern of a *single* dipole (actually a "ring" current source with angular dependence $e^{im\phi}$). [Tutorial/Nonaxisymmetric Dipole Sources](Cylindrical_Coordinates.md#nonaxisymmetric-dipole-sources) described the method for modeling a point dipole at $r > 0$ in cylindrical coordinates using a Fourier-series expansion of the fields in $\phi$. [Tutorial/Extraction Efficiency of a Light-Emitting Diode](Local_Density_of_States.md#extraction-efficiency-of-a-light-emitting-diode-led) described the procedure for computing the extraction efficiency of a dipole at $r = 0$. These three demonstrations can be combined to compute the extraction efficiency for a point dipole *anywhere* in the cylindrical cell. Computing the extraction efficiency of an actual light-emitting diode (LED), however, involves a collection of spatially incoherent dipole emitters. [Tutorial/Stochastic Dipole Emission in Light Emitting Diodes](Custom_Source.md#stochastic-dipole-emission-in-light-emitting-diodes) described a method for computing the emission of a collection of dipoles using a series of single-dipole calculations and then averaging the emission profiles in post processing. The example used a 2D simulation involving a 1D binary grating (or photonic crystal). This tutorial demonstrates how this approach for modeling spatially incoherent dipoles can be extended to cylindrical coordinates for structures with rotational symmetry.

Note: in the case of a disc, the set of dipoles within the quantum well (QW) which spans a 2D surface only needs to be computed along a line. This means that the number of single-dipole simulations necessary for convergence is the same in cylindrical and 3D Cartesian coordinates.

Note: for randomly polarized emission from the QW, each dipole requires computing the emission from the two orthogonal "in-plane" polarization states of $E_r$ and $E_\phi$ separately and averaging the results in post processing. In this example, only the $E_r$ polarization state is used.

The example uses the same setup as the [previous tutorial](#radiation-pattern-of-a-disc-in-cylindrical-coordinates) involving a dielectric disc above a lossless-reflector ground plane. The dipoles are arranged on a line extending from $r = 0$ to $r = R$ where $R$ is the disc radius. The height of the dipoles ($z$ coordinate) within the disc is fixed. The radiation pattern $P(r,\theta)$ for a dipole at $r > 0$ is computed using a Fourier-series expansion in $\phi$. The *total* radiation pattern $P(\theta)$ for an ensemble of incoherent dipoles is just the integral of the individual dipole powers, which we can approximate by a sum:

$$P(\theta) \approx \int_0^R P(r,\theta) s(r) 2\pi rdr = \sum_{n=0}^{N-1} P(r_n,\theta) s(r_n) 2\pi r_n \Delta r$$,
Expand Down