Skip to content

Commit

Permalink
equivalent source
Browse files Browse the repository at this point in the history
  • Loading branch information
mochen4 committed Feb 29, 2024
1 parent a7172e7 commit 7a51164
Showing 1 changed file with 110 additions and 86 deletions.
196 changes: 110 additions & 86 deletions doc/docs/Python_Tutorials/Cylindrical_Coordinates.md
Original file line number Diff line number Diff line change
Expand Up @@ -463,7 +463,7 @@ It is also possible to launch an oblique incident planewave in cylindrical coord
Given the decomposition of planewave into the sum of different current sources at each $m$, we can run individual simulations at each $m$ with their corresponding source amplitudes and record the relevant physical quantities. For quantities such fields, linearity implies that we can simply sum the results from each simulations; for quantities such as flux, orthogonality implies cross terms will be zero, and we can again simply sum the results. Moreover, simulations
at each $m$ values are embarrassingly parallel so they can be run simultaneously.

On the other hand, because the source amplitudes $J_r(r,m)$ and $J_\phi(r,m)$ are generally not constant and extend to infinity, we have to make sure the sources are wide enough to accurately approximate the actual incident wave.
On the other hand, because the source amplitudes $J_r(r,m)$ and $J_\phi(r,m)$ are generally not constant and extend to infinity, we used the principle of equivalence (for reference, see [Electromagnetic wave source condition](https://arxiv.org/pdf/1301.5366.pdf)) to create equivalent sources that are of finite sizes.

We present an example below that calculates the scattered flux of a sphere. Because of the spherical symmetry, incidence at different angle should have identical results. We can thus use this feature to check our approach. Note that because of the axial symmetry in the cylindrical coordinates, we cannot distinguish different azimuthal angles but we can distinguish different polar angles. We thus simply choose our incidence to be of form $E_ye^{ik_xx}$, and we can vary the angle of incidence by varying $k_x$.

Expand All @@ -472,111 +472,135 @@ import numpy as np
from scipy import special
import meep as mp
mp.verbosity(0)
r = 0.5 # radius of sphere
r = 0.6 # size of flux box
cyl_r = 0.5 # radius of sphere
h = 2 * r # height/diameter of sphere

wvl = 2 * np.pi * r / 4
wvl = 2 * np.pi * cyl_r / 4
frq_cen = 1 / wvl
dfrq = 0.2
nfrq = 1
resolution, dair_fac, mrange = 50, 20, 4
resolution, mrange = 50, 5
dpml = 0.5 * wvl
dair = 1.0 * wvl
pml_layers = [mp.PML(thickness=dpml)]
sr = r + dair_fac*dair + dpml
sr = r + dair + dpml
sz = dpml + dair + h + dair + dpml
cell_size = mp.Vector3(sr, 0, sz)
n_cyl = 2.0
geometry = [mp.Sphere(material=mp.Medium(index=n_cyl), center=mp.Vector3(), radius=r)]
geometry = [mp.Sphere(material=mp.Medium(index=n_cyl), center=mp.Vector3(), radius=cyl_r)]

k_cen = 2 * np.pi * frq_cen
alpha_list = [0, np.pi/36, np.pi/24, np.pi/12]
alpha_list = [0, np.pi/36, np.pi/24, np.pi/18, np.pi/12]
alpha_range = len(alpha_list)

scatt_flux_m = np.zeros((alpha_range, 2*mrange+1))
for alpha_i in range(alpha_range):
alpha = alpha_list[alpha_i]
kxy, kz = k_cen*np.sin(alpha), k_cen * np.cos(alpha)

for cur_m in range(-mrange, mrange+1):
coeff_p1 = 0.5 * (1j)**(cur_m+1)
coeff_m1 = 0.5 * (1j)**(cur_m-1)

src_cen = 0.5 * (r + dair_fac*dair)
Jpm = lambda v3: coeff_p1 * special.jv(cur_m+1, kxy * (v3.x+src_cen)) + coeff_m1 * special.jv(cur_m-1, kxy * (v3.x+src_cen))
Jrm = lambda v3: 1j * coeff_p1 * special.jv(cur_m+1, kxy * (v3.x+src_cen)) - 1j * coeff_m1 * special.jv(cur_m-1, kxy * (v3.x+src_cen))

sources = [
mp.Source(mp.GaussianSource(frq_cen, fwidth=dfrq),
component=mp.Er, center=mp.Vector3(src_cen, 0, -0.5 * sz + dpml),
size=mp.Vector3(r + dair_fac*dair), amp_func = Jrm),
mp.Source(mp.GaussianSource(frq_cen, fwidth=dfrq),
component=mp.Ep, center=mp.Vector3(src_cen, 0, -0.5 * sz + dpml),
size=mp.Vector3(r + dair_fac*dair), amp_func = Jpm),]

sim = mp.Simulation(
cell_size=cell_size,
boundary_layers=pml_layers,
resolution=resolution,
sources=sources,
dimensions=mp.CYLINDRICAL,
m=cur_m,
force_complex_fields = True,
accurate_fields_near_cylorigin=True,
Courant=0.2)

box_z1 = sim.add_flux(frq_cen, dfrq, nfrq,
mp.FluxRegion(center=mp.Vector3(0.5 * r, 0, -0.5 * h), size=mp.Vector3(r)))
box_z2 = sim.add_flux(frq_cen, dfrq, nfrq,
mp.FluxRegion(center=mp.Vector3(0.5 * r, 0, +0.5 * h), size=mp.Vector3(r)))
box_r = sim.add_flux(frq_cen, dfrq, nfrq,
mp.FluxRegion(center=mp.Vector3(r), size=mp.Vector3(z=h)))

sim.run(until_after_sources=10)

freqs = mp.get_flux_freqs(box_z1)
box_z1_data = sim.get_flux_data(box_z1)
box_z2_data = sim.get_flux_data(box_z2)
box_r_data = sim.get_flux_data(box_r)
box_z1_flux0 = mp.get_fluxes(box_z1)

sim.reset_meep()

sim = mp.Simulation(
cell_size=cell_size,
geometry=geometry,
boundary_layers=pml_layers,
resolution=resolution,
sources=sources,
dimensions=mp.CYLINDRICAL,
m=cur_m,
force_complex_fields = True,
accurate_fields_near_cylorigin=True,
Courant=0.2)

box_z1 = sim.add_flux(frq_cen, dfrq, nfrq,
mp.FluxRegion(center=mp.Vector3(0.5 * r, 0, -0.5 * h), size=mp.Vector3(r)))
box_z2 = sim.add_flux(frq_cen, dfrq, nfrq,
mp.FluxRegion(center=mp.Vector3(0.5 * r, 0, +0.5 * h), size=mp.Vector3(r)))
box_r = sim.add_flux(frq_cen, dfrq, nfrq,
mp.FluxRegion(center=mp.Vector3(r), size=mp.Vector3(z=h)))

sim.load_minus_flux_data(box_z1, box_z1_data)
sim.load_minus_flux_data(box_z2, box_z2_data)
sim.load_minus_flux_data(box_r, box_r_data)

sim.run(until_after_sources=100)

box_z1_flux = mp.get_fluxes(box_z1)
box_z2_flux = mp.get_fluxes(box_z2)
box_r_flux = mp.get_fluxes(box_r)
src_size_tb = 2*r
src_size_side = 3*r
src_center_top = mp.Vector3(src_size_tb/2, 0, src_size_side/2)
src_center_bottom = mp.Vector3(src_size_tb/2, 0, -src_size_side/2)
src_center_side = mp.Vector3(src_size_tb, 0, 0)

scatt_flux_m[alpha_i, cur_m + mrange] = box_z1_flux[0] - box_z2_flux[0] - box_r_flux[0]
sim.reset_meep()
scatt_flux_m = np.zeros((alpha_range, mrange+1))
for alpha_i in range(alpha_range):
alpha = alpha_list[alpha_i]
kxy, kz = k_cen*np.sin(alpha), k_cen * np.cos(alpha)
amp_side = lambda v3: np.exp(1j * kz*(v3.z+src_size_side/2))
phase_top = amp_side(src_center_top)

for cur_m in range(0, mrange+1):
if alpha!=0 or cur_m == 1:
coeff_p1 = 0.5 * (1j)**(cur_m+1)
coeff_m1 = 0.5 * (1j)**(cur_m-1)

src_cen = src_size_tb/2
Jpm = lambda v3: coeff_p1 * special.jv(cur_m+1, kxy * (v3.x+src_cen)) + coeff_m1 * special.jv(cur_m-1, kxy * (v3.x+src_cen))
Jrm = lambda v3: 1j * coeff_p1 * special.jv(cur_m+1, kxy * (v3.x+src_cen)) - 1j * coeff_m1 * special.jv(cur_m-1, kxy * (v3.x+src_cen))
Jside = (1j)**cur_m * special.jv(cur_m, kxy*src_size_tb) * kxy/k_cen


sourcesp = [
mp.Source(mp.GaussianSource(frq_cen, fwidth=dfrq),component=mp.Er, center=src_center_bottom,size=mp.Vector3(src_size_tb), amplitude = -kz/k_cen, amp_func = Jrm),
mp.Source(mp.GaussianSource(frq_cen, fwidth=dfrq),component=mp.Ep, center=src_center_bottom,size=mp.Vector3(src_size_tb), amplitude = -kz/k_cen, amp_func = Jpm),
mp.Source(mp.GaussianSource(frq_cen, fwidth=dfrq),component=mp.Hr, center=src_center_bottom,size=mp.Vector3(src_size_tb), amp_func = Jpm),
mp.Source(mp.GaussianSource(frq_cen, fwidth=dfrq),component=mp.Hp, center=src_center_bottom,size=mp.Vector3(src_size_tb), amplitude = -1, amp_func = Jrm),
mp.Source(mp.GaussianSource(frq_cen, fwidth=dfrq),component=mp.Er, center=src_center_top,size=mp.Vector3(src_size_tb), amplitude = phase_top*kz/k_cen, amp_func = Jrm),
mp.Source(mp.GaussianSource(frq_cen, fwidth=dfrq),component=mp.Ep, center=src_center_top,size=mp.Vector3(src_size_tb), amplitude = phase_top*kz/k_cen, amp_func = Jpm),
mp.Source(mp.GaussianSource(frq_cen, fwidth=dfrq),component=mp.Hr, center=src_center_top,size=mp.Vector3(src_size_tb), amplitude = -phase_top, amp_func = Jpm),
mp.Source(mp.GaussianSource(frq_cen, fwidth=dfrq),component=mp.Hp, center=src_center_top,size=mp.Vector3(src_size_tb), amplitude = phase_top, amp_func = Jrm),
mp.Source(mp.GaussianSource(frq_cen, fwidth=dfrq),component=mp.Ez, center=src_center_side,size=mp.Vector3(z=src_size_side), amplitude = -Jrm(src_center_top)*kz/k_cen, amp_func = amp_side),
mp.Source(mp.GaussianSource(frq_cen, fwidth=dfrq),component=mp.Hz, center=src_center_side,size=mp.Vector3(z=src_size_side), amplitude = Jpm(src_center_top), amp_func = amp_side),
mp.Source(mp.GaussianSource(frq_cen, fwidth=dfrq),component=mp.Ep, center=src_center_side,size=mp.Vector3(z=src_size_side), amplitude = Jside, amp_func = amp_side),
]


sim = mp.Simulation(
cell_size=cell_size,
boundary_layers=pml_layers,
resolution=resolution,
sources=sourcesp,
dimensions=mp.CYLINDRICAL,
m=cur_m,
force_complex_fields = True,
accurate_fields_near_cylorigin=True,
Courant=min(0.5, 1/(abs(cur_m)+0.5)))

box_z1 = sim.add_flux(frq_cen, dfrq, nfrq,
mp.FluxRegion(center=mp.Vector3(0.5 * r, 0, -0.5 * h), size=mp.Vector3(r)))
box_z2 = sim.add_flux(frq_cen, dfrq, nfrq,
mp.FluxRegion(center=mp.Vector3(0.5 * r, 0, +0.5 * h), size=mp.Vector3(r)))
box_r = sim.add_flux(frq_cen, dfrq, nfrq,
mp.FluxRegion(center=mp.Vector3(r), size=mp.Vector3(z=h)))


sim.run(until_after_sources=10)

freqs = mp.get_flux_freqs(box_z1)
box_z1_data = sim.get_flux_data(box_z1)
box_z2_data = sim.get_flux_data(box_z2)
box_r_data = sim.get_flux_data(box_r)
box_z1_flux0 = mp.get_fluxes(box_z1)


sim.reset_meep()

sim = mp.Simulation(
cell_size=cell_size,
geometry=geometry,
boundary_layers=pml_layers,
resolution=resolution,
sources=sourcesp,
dimensions=mp.CYLINDRICAL,
m=cur_m,
force_complex_fields = True,
accurate_fields_near_cylorigin=True,
Courant=min(0.5, 1/(abs(cur_m)+0.5)))

box_z1 = sim.add_flux(frq_cen, dfrq, nfrq,
mp.FluxRegion(center=mp.Vector3(0.5 * r, 0, -0.5 * h), size=mp.Vector3(r)))
box_z2 = sim.add_flux(frq_cen, dfrq, nfrq,
mp.FluxRegion(center=mp.Vector3(0.5 * r, 0, +0.5 * h), size=mp.Vector3(r)))
box_r = sim.add_flux(frq_cen, dfrq, nfrq,
mp.FluxRegion(center=mp.Vector3(r), size=mp.Vector3(z=h)))


sim.load_minus_flux_data(box_z1, box_z1_data)
sim.load_minus_flux_data(box_z2, box_z2_data)
sim.load_minus_flux_data(box_r, box_r_data)


sim.run(until_after_sources=100)

box_z1_flux = mp.get_fluxes(box_z1)
box_z2_flux = mp.get_fluxes(box_z2)
box_r_flux = mp.get_fluxes(box_r)

scatt_flux_m[alpha_i, cur_m] = box_z1_flux[0] - box_z2_flux[0] - box_r_flux[0]
sim.reset_meep()

scatt_power_m = np.zeros((alpha_range, mrange+1))
for i in range(mrange+1):
scatt_power_m[:,i] = - np.sum(scatt_flux_m[:,(mrange-i):(mrange+i+1)], axis=1)
scatt_power_m[:,i] = - 2*np.sum(scatt_flux_m[:,0:(i+1)], axis=1) + scatt_flux_m[:,0]

print(scatt_power_m)

Expand Down

0 comments on commit 7a51164

Please sign in to comment.