-
Notifications
You must be signed in to change notification settings - Fork 0
/
move_group_python_interface_tutorial.py
581 lines (486 loc) · 23.5 KB
/
move_group_python_interface_tutorial.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
#!/usr/bin/env python
# Software License Agreement (BSD License)
#
# Copyright (c) 2013, SRI International
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above
# copyright notice, this list of conditions and the following
# disclaimer in the documentation and/or other materials provided
# with the distribution.
# * Neither the name of SRI International nor the names of its
# contributors may be used to endorse or promote products derived
# from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
# COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
# ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
#
# Author: Acorn Pooley, Mike Lautman
## BEGIN_SUB_TUTORIAL imports
##
## To use the Python MoveIt interfaces, we will import the `moveit_commander`_ namespace.
## This namespace provides us with a `MoveGroupCommander`_ class, a `PlanningSceneInterface`_ class,
## and a `RobotCommander`_ class. More on these below. We also import `rospy`_ and some messages that we will use:
##
# Python 2/3 compatibility imports
from __future__ import print_function
from six.moves import input
import sys
import copy
import rospy
import moveit_commander
import moveit_msgs.msg
import geometry_msgs.msg
import asyncio
try:
from math import pi, tau, dist, fabs, cos
except: # For Python 2 compatibility
from math import pi, fabs, cos, sqrt
tau = 2.0 * pi
def dist(p, q):
return sqrt(sum((p_i - q_i) ** 2.0 for p_i, q_i in zip(p, q)))
from std_msgs.msg import String
from moveit_commander.conversions import pose_to_list
## END_SUB_TUTORIAL
def all_close(goal, actual, tolerance):
"""
Convenience method for testing if the values in two lists are within a tolerance of each other.
For Pose and PoseStamped inputs, the angle between the two quaternions is compared (the angle
between the identical orientations q and -q is calculated correctly).
@param: goal A list of floats, a Pose or a PoseStamped
@param: actual A list of floats, a Pose or a PoseStamped
@param: tolerance A float
@returns: bool
"""
if type(goal) is list:
for index in range(len(goal)):
if abs(actual[index] - goal[index]) > tolerance:
return False
elif type(goal) is geometry_msgs.msg.PoseStamped:
return all_close(goal.pose, actual.pose, tolerance)
elif type(goal) is geometry_msgs.msg.Pose:
x0, y0, z0, qx0, qy0, qz0, qw0 = pose_to_list(actual)
x1, y1, z1, qx1, qy1, qz1, qw1 = pose_to_list(goal)
# Euclidean distance
d = dist((x1, y1, z1), (x0, y0, z0))
# phi = angle between orientations
cos_phi_half = fabs(qx0 * qx1 + qy0 * qy1 + qz0 * qz1 + qw0 * qw1)
return d <= tolerance and cos_phi_half >= cos(tolerance / 2.0)
return True
class MoveGroupPythonInterfaceTutorial(object):
"""MoveGroupPythonInterfaceTutorial"""
def __init__(self):
super(MoveGroupPythonInterfaceTutorial, self).__init__()
## BEGIN_SUB_TUTORIAL setup
##
## First initialize `moveit_commander`_ and a `rospy`_ node:
moveit_commander.roscpp_initialize(sys.argv)
# ist in der main bei spawn.py definiert
#ospy.init_node("move_group_python_interface_tutorial", anonymous=True)
#rospy.init_node('panda_gripper_controller')
## Instantiate a `RobotCommander`_ object. Provides information such as the robot's
## kinematic model and the robot's current joint states
robot = moveit_commander.RobotCommander()
## Instantiate a `PlanningSceneInterface`_ object. This provides a remote interface
## for getting, setting, and updating the robot's internal understanding of the
## surrounding world:
scene = moveit_commander.PlanningSceneInterface()
## Instantiate a `MoveGroupCommander`_ object. This object is an interface
## to a planning group (group of joints). In this tutorial the group is the primary
## arm joints in the Panda robot, so we set the group's name to "panda_arm".
## If you are using a different robot, change this value to the name of your robot
## arm planning group.
## This interface can be used to plan and execute motions:
group_name = "panda_arm"
move_group = moveit_commander.MoveGroupCommander(group_name)
## Create a `DisplayTrajectory`_ ROS publisher which is used to display
## trajectories in Rviz:
display_trajectory_publisher = rospy.Publisher(
"/move_group/display_planned_path",
moveit_msgs.msg.DisplayTrajectory,
queue_size=20,
)
## END_SUB_TUTORIAL
## BEGIN_SUB_TUTORIAL basic_info
##
## Getting Basic Information
## ^^^^^^^^^^^^^^^^^^^^^^^^^
# We can get the name of the reference frame for this robot:
planning_frame = move_group.get_planning_frame()
print("============ Planning frame: %s" % planning_frame)
# We can also print the name of the end-effector link for this group:
eef_link = move_group.get_end_effector_link()
print("============ End effector link: %s" % eef_link)
# We can get a list of all the groups in the robot:
group_names = robot.get_group_names()
print("============ Available Planning Groups:", robot.get_group_names())
# Sometimes for debugging it is useful to print the entire state of the
# robot:
print("============ Printing robot state")
print(robot.get_current_state())
print("")
## END_SUB_TUTORIAL
# Misc variables
self.box_name = ""
self.robot = robot
self.scene = scene
self.move_group = move_group
self.display_trajectory_publisher = display_trajectory_publisher
self.planning_frame = planning_frame
self.eef_link = eef_link
self.group_names = group_names
def go_to_joint_state(self, j0, j1, j2, j3, j4, j5, j6):
# Copy class variables to local variables to make the web tutorials more clear.
# In practice, you should use the class variables directly unless you have a good
# reason not to.
move_group = self.move_group
## BEGIN_SUB_TUTORIAL plan_to_joint_state
##
## Planning to a Joint Goal
## ^^^^^^^^^^^^^^^^^^^^^^^^
## The Panda's zero configuration is at a `singularity <https://www.quora.com/Robotics-What-is-meant-by-kinematic-singularity>`_, so the first
## thing we want to do is move it to a slightly better configuration.
## We use the constant `tau = 2*pi <https://en.wikipedia.org/wiki/Turn_(angle)#Tau_proposals>`_ for convenience:
# We get the joint values from the group and change some of the values:
move_group = self.move_group
angle = tau / 360
# We get the joint values from the group and change some of the values:
joint_goal = move_group.get_current_joint_values()
joint_goal[0] = j0 * angle
joint_goal[1] = j1 * angle
joint_goal[2] = j2 * angle
joint_goal[3] = j3 * angle
joint_goal[4] = j4 * angle
joint_goal[5] = j5 * angle
joint_goal[6] = j6 * angle
plan = move_group.plan(joint_goal)
move_group.go(joint_goal)
# Calling ``stop()`` ensures that there is no residual movement
move_group.stop()
## END_SUB_TUTORIAL
# For testing:
current_joints = move_group.get_current_joint_values()
return all_close(joint_goal, current_joints, 0.01)
def go_to_pose_goal(self, x, y, z):
# Copy class variables to local variables to make the web tutorials more clear.
# In practice, you should use the class variables directly unless you have a good
# reason not to.
move_group = self.move_group
## BEGIN_SUB_TUTORIAL plan_to_pose
##
## Planning to a Pose Goal
## ^^^^^^^^^^^^^^^^^^^^^^^
## We can plan a motion for this group to a desired pose for the
## end-effector:
pose_goal = geometry_msgs.msg.Pose()
pose_goal.orientation.w = 1
pose_goal.position.x = x
pose_goal.position.y = y
pose_goal.position.z = z
move_group.set_pose_target(pose_goal)
## Now, we call the planner to compute the plan and execute it.
# `go()` returns a boolean indicating whether the planning and execution was successful.
success = move_group.go(wait=True)
# Calling `stop()` ensures that there is no residual movement
move_group.stop()
# It is always good to clear your targets after planning with poses.
# Note: there is no equivalent function for clear_joint_value_targets().
move_group.clear_pose_targets()
## END_SUB_TUTORIAL
# For testing:
# Note that since this section of code will not be included in the tutorials
# we use the class variable rather than the copied state variable
current_pose = self.move_group.get_current_pose().pose
return all_close(pose_goal, current_pose, 0.01)
def plan_cartesian_path(self, scale, x, y, z):
# Copy class variables to local variables to make the web tutorials more clear.
# In practice, you should use the class variables directly unless you have a good
# reason not to.
move_group = self.move_group
## BEGIN_SUB_TUTORIAL plan_cartesian_path
##
## Cartesian Paths
## ^^^^^^^^^^^^^^^
## You can plan a Cartesian path directly by specifying a list of waypoints
## for the end-effector to go through. If executing interactively in a
## Python shell, set scale = 1.0.
##
waypoints = []
wpose = move_group.get_current_pose().pose
wpose.position.x -= scale * x # First move up (z)
wpose.position.y += scale * y # and sideways (y)
wpose.position.z -= scale * z # First move up (z)
waypoints.append(copy.deepcopy(wpose))
# We want the Cartesian path to be interpolated at a resolution of 1 cm
# which is why we will specify 0.01 as the eef_step in Cartesian
# translation. We will disable the jump threshold by setting it to 0.0,
# ignoring the check for infeasible jumps in joint space, which is sufficient
# for this tutorial.
(plan, fraction) = move_group.compute_cartesian_path(
waypoints, 0.01, 0.0 # waypoints to follow # eef_step
) # jump_threshold
# Note: We are just planning, not asking move_group to actually move the robot yet:
return plan, fraction
## END_SUB_TUTORIAL
def display_trajectory(self, plan):
# Copy class variables to local variables to make the web tutorials more clear.
# In practice, you should use the class variables directly unless you have a good
# reason not to.
robot = self.robot
display_trajectory_publisher = self.display_trajectory_publisher
## BEGIN_SUB_TUTORIAL display_trajectory
##
## Displaying a Trajectory
## ^^^^^^^^^^^^^^^^^^^^^^^
## You can ask RViz to visualize a plan (aka trajectory) for you. But the
## group.plan() method does this automatically so this is not that useful
## here (it just displays the same trajectory again):
##
## A `DisplayTrajectory`_ msg has two primary fields, trajectory_start and trajectory.
## We populate the trajectory_start with our current robot state to copy over
## any AttachedCollisionObjects and add our plan to the trajectory.
display_trajectory = moveit_msgs.msg.DisplayTrajectory()
display_trajectory.trajectory_start = robot.get_current_state()
display_trajectory.trajectory.append(plan)
# Publish
display_trajectory_publisher.publish(display_trajectory)
## END_SUB_TUTORIAL
def execute_plan(self, plan):
# Copy class variables to local variables to make the web tutorials more clear.
# In practice, you should use the class variables directly unless you have a good
# reason not to.
move_group = self.move_group
## BEGIN_SUB_TUTORIAL execute_plan
##
## Executing a Plan
## ^^^^^^^^^^^^^^^^
## Use execute if you would like the robot to follow
## the plan that has already been computed:
move_group.execute(plan, wait=True)
## **Note:** The robot's current joint state must be within some tolerance of the
## first waypoint in the `RobotTrajectory`_ or ``execute()`` will fail
## END_SUB_TUTORIAL
def wait_for_state_update(
self, box_is_known=False, box_is_attached=False, timeout=4
):
# Copy class variables to local variables to make the web tutorials more clear.
# In practice, you should use the class variables directly unless you have a good
# reason not to.
box_name = self.box_name
scene = self.scene
## BEGIN_SUB_TUTORIAL wait_for_scene_update
##
## Ensuring Collision Updates Are Received
## ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
## If the Python node was just created (https://github.com/ros/ros_comm/issues/176),
## or dies before actually publishing the scene update message, the message
## could get lost and the box will not appear. To ensure that the updates are
## made, we wait until we see the changes reflected in the
## ``get_attached_objects()`` and ``get_known_object_names()`` lists.
## For the purpose of this tutorial, we call this function after adding,
## removing, attaching or detaching an object in the planning scene. We then wait
## until the updates have been made or ``timeout`` seconds have passed.
## To avoid waiting for scene updates like this at all, initialize the
## planning scene interface with ``synchronous = True``.
start = rospy.get_time()
seconds = rospy.get_time()
while (seconds - start < timeout) and not rospy.is_shutdown():
# Test if the box is in attached objects
attached_objects = scene.get_attached_objects([box_name])
is_attached = len(attached_objects.keys()) > 0
# Test if the box is in the scene.
# Note that attaching the box will remove it from known_objects
is_known = box_name in scene.get_known_object_names()
# Test if we are in the expected state
if (box_is_attached == is_attached) and (box_is_known == is_known):
return True
# Sleep so that we give other threads time on the processor
rospy.sleep(0.1)
seconds = rospy.get_time()
# If we exited the while loop without returning then we timed out
return False
## END_SUB_TUTORIAL
def add_box(self, timeout=4):
# Copy class variables to local variables to make the web tutorials more clear.
# In practice, you should use the class variables directly unless you have a good
# reason not to.
box_name = self.box_name
scene = self.scene
## BEGIN_SUB_TUTORIAL add_box
##
## Adding Objects to the Planning Scene
## ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
## First, we will create a box in the planning scene between the fingers:
box_pose = geometry_msgs.msg.PoseStamped()
box_pose.header.frame_id = "panda_hand"
box_pose.pose.orientation.w = 1.0
box_pose.pose.position.z = 0.11 # above the panda_hand frame
box_name = "box"
scene.add_box(box_name, box_pose, size=(0.075, 0.075, 0.075))
## END_SUB_TUTORIAL
# Copy local variables back to class variables. In practice, you should use the class
# variables directly unless you have a good reason not to.
self.box_name = box_name
return self.wait_for_state_update(box_is_known=True, timeout=timeout)
def attach_box(self, timeout=4):
# Copy class variables to local variables to make the web tutorials more clear.
# In practice, you should use the class variables directly unless you have a good
# reason not to.
box_name = self.box_name
robot = self.robot
scene = self.scene
eef_link = self.eef_link
group_names = self.group_names
## BEGIN_SUB_TUTORIAL attach_object
##
## Attaching Objects to the Robot
## ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
## Next, we will attach the box to the Panda wrist. Manipulating objects requires the
## robot be able to touch them without the planning scene reporting the contact as a
## collision. By adding link names to the ``touch_links`` array, we are telling the
## planning scene to ignore collisions between those links and the box. For the Panda
## robot, we set ``grasping_group = 'hand'``. If you are using a different robot,
## you should change this value to the name of your end effector group name.
grasping_group = "panda_hand"
touch_links = robot.get_link_names(group=grasping_group)
scene.attach_box(eef_link, box_name, touch_links=touch_links)
## END_SUB_TUTORIAL
# We wait for the planning scene to update.
return self.wait_for_state_update(
box_is_attached=True, box_is_known=False, timeout=timeout
)
def detach_box(self, timeout=4):
# Copy class variables to local variables to make the web tutorials more clear.
# In practice, you should use the class variables directly unless you have a good
# reason not to.
box_name = self.box_name
scene = self.scene
eef_link = self.eef_link
## BEGIN_SUB_TUTORIAL detach_object
##
## Detaching Objects from the Robot
## ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
## We can also detach and remove the object from the planning scene:
scene.remove_attached_object(eef_link, name=box_name)
## END_SUB_TUTORIAL
# We wait for the planning scene to update.
return self.wait_for_state_update(
box_is_known=True, box_is_attached=False, timeout=timeout
)
def remove_box(self, timeout=4):
# Copy class variables to local variables to make the web tutorials more clear.
# In practice, you should use the class variables directly unless you have a good
# reason not to.
box_name = self.box_name
scene = self.scene
## BEGIN_SUB_TUTORIAL remove_object
##
## Removing Objects from the Planning Scene
## ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
## We can remove the box from the world.
scene.remove_world_object(box_name)
## **Note:** The object must be detached before we can remove it from the world
## END_SUB_TUTORIAL
# We wait for the planning scene to update.
return self.wait_for_state_update(
box_is_attached=False, box_is_known=False, timeout=timeout
)
def main():
try:
print("")
print("----------------------------------------------------------")
print("Welcome to the MoveIt MoveGroup Python Interface Tutorial")
print("----------------------------------------------------------")
print("Press Ctrl-D to exit at any time")
print("")
input(
"============ Press `Enter` to begin the tutorial by setting up the moveit_commander ..."
)
tutorial = MoveGroupPythonInterfaceTutorial()
input(
"============ Press `Enter` to execute a movement using a joint state goal ..."
)
tutorial.go_to_joint_state()
input("============ Press `Enter` to execute a movement using a pose goal ...")
tutorial.go_to_pose_goal()
input("============ Press `Enter` to plan and display a Cartesian path ...")
cartesian_plan, fraction = tutorial.plan_cartesian_path()
input(
"============ Press `Enter` to display a saved trajectory (this will replay the Cartesian path) ..."
)
tutorial.display_trajectory(cartesian_plan)
input("============ Press `Enter` to execute a saved path ...")
tutorial.execute_plan(cartesian_plan)
input("============ Press `Enter` to add a box to the planning scene ...")
tutorial.add_box()
input("============ Press `Enter` to attach a Box to the Panda robot ...")
tutorial.attach_box()
input(
"============ Press `Enter` to plan and execute a path with an attached collision object ..."
)
cartesian_plan, fraction = tutorial.plan_cartesian_path(scale=-1)
tutorial.execute_plan(cartesian_plan)
input("============ Press `Enter` to detach the box from the Panda robot ...")
tutorial.detach_box()
input(
"============ Press `Enter` to remove the box from the planning scene ..."
)
tutorial.remove_box()
print("============ Python tutorial demo complete!")
except rospy.ROSInterruptException:
return
except KeyboardInterrupt:
return
if __name__ == "__main__":
main()
## BEGIN_TUTORIAL
## .. _moveit_commander:
## http://docs.ros.org/noetic/api/moveit_commander/html/namespacemoveit__commander.html
##
## .. _MoveGroupCommander:
## http://docs.ros.org/noetic/api/moveit_commander/html/classmoveit__commander_1_1move__group_1_1MoveGroupCommander.html
##
## .. _RobotCommander:
## http://docs.ros.org/noetic/api/moveit_commander/html/classmoveit__commander_1_1robot_1_1RobotCommander.html
##
## .. _PlanningSceneInterface:
## http://docs.ros.org/noetic/api/moveit_commander/html/classmoveit__commander_1_1planning__scene__interface_1_1PlanningSceneInterface.html
##
## .. _DisplayTrajectory:
## http://docs.ros.org/noetic/api/moveit_msgs/html/msg/DisplayTrajectory.html
##
## .. _RobotTrajectory:
## http://docs.ros.org/noetic/api/moveit_msgs/html/msg/RobotTrajectory.html
##
## .. _rospy:
## http://docs.ros.org/noetic/api/rospy/html/
## CALL_SUB_TUTORIAL imports
## CALL_SUB_TUTORIAL setup
## CALL_SUB_TUTORIAL basic_info
## CALL_SUB_TUTORIAL plan_to_joint_state
## CALL_SUB_TUTORIAL plan_to_pose
## CALL_SUB_TUTORIAL plan_cartesian_path
## CALL_SUB_TUTORIAL display_trajectory
## CALL_SUB_TUTORIAL execute_plan
## CALL_SUB_TUTORIAL add_box
## CALL_SUB_TUTORIAL wait_for_scene_update
## CALL_SUB_TUTORIAL attach_object
## CALL_SUB_TUTORIAL detach_object
## CALL_SUB_TUTORIAL remove_object
## END_TUTORIAL