Autoregressive Conditional Heteroskedasticity (ARCH) and other tools for financial econometrics, written in Python (with Cython and/or Numba used to improve performance)
Version 4.8 is the final version that officially supports or is tested on Python 2.7, and is the final version that has Python 2.7 wheels. It is time to move to Python 3.5+, and to enjoy the substantial improvement available in recent Python releases.
Released documentation is hosted on read the docs. Current documentation from the master branch is hosted on my github pages.
More information about ARCH and related models is available in the notes and research available at Kevin Sheppard's site.
Contributions are welcome. There are opportunities at many levels to contribute:
- Implement new volatility process, e.g., FIGARCH
- Improve docstrings where unclear or with typos
- Provide examples, preferably in the form of IPython notebooks
- Mean models
- Constant mean
- Heterogeneous Autoregression (HAR)
- Autoregression (AR)
- Zero mean
- Models with and without exogenous regressors
- Volatility models
- ARCH
- GARCH
- TARCH
- EGARCH
- EWMA/RiskMetrics
- Distributions
- Normal
- Student's T
- Generalized Error Distribution
See the univariate volatility example notebook for a more complete overview.
import datetime as dt
import pandas.io.data as web
st = dt.datetime(1990,1,1)
en = dt.datetime(2014,1,1)
data = web.get_data_yahoo('^FTSE', start=st, end=en)
returns = 100 * data['Adj Close'].pct_change().dropna()
from arch import arch_model
am = arch_model(returns)
res = am.fit()
- Augmented Dickey-Fuller
- Dickey-Fuller GLS
- Phillips-Perron
- KPSS
- Zivot-Andrews
- Variance Ratio tests
See the unit root testing example notebook for examples of testing series for unit roots.
- Bootstraps
- IID Bootstrap
- Stationary Bootstrap
- Circular Block Bootstrap
- Moving Block Bootstrap
- Methods
- Confidence interval construction
- Covariance estimation
- Apply method to estimate model across bootstraps
- Generic Bootstrap iterator
See the bootstrap example notebook for examples of bootstrapping the Sharpe ratio and a Probit model from Statsmodels.
# Import data
import datetime as dt
import pandas as pd
import pandas.io.data as web
start = dt.datetime(1951,1,1)
end = dt.datetime(2014,1,1)
sp500 = web.get_data_yahoo('^GSPC', start=start, end=end)
start = sp500.index.min()
end = sp500.index.max()
monthly_dates = pd.date_range(start, end, freq='M')
monthly = sp500.reindex(monthly_dates, method='ffill')
returns = 100 * monthly['Adj Close'].pct_change().dropna()
# Function to compute parameters
def sharpe_ratio(x):
mu, sigma = 12 * x.mean(), np.sqrt(12 * x.var())
return np.array([mu, sigma, mu / sigma])
# Bootstrap confidence intervals
from arch.bootstrap import IIDBootstrap
bs = IIDBootstrap(returns)
ci = bs.conf_int(sharpe_ratio, 1000, method='percentile')
- Test of Superior Predictive Ability (SPA), also known as the Reality Check or Bootstrap Data Snooper
- Stepwise (StepM)
- Model Confidence Set (MCS)
See the multiple comparison example notebook for examples of the multiple comparison procedures.
These requirements reflect the testing environment. It is possible that arch will work with older versions.
- Python (3.5+)
- NumPy (1.13+)
- SciPy (0.19+)
- Pandas (0.21+)
- statsmodels (0.8+)
- matplotlib (2.0+), optional
- cached-property (1.5.1+), optional
- Numba (0.35+) will be used if available and when installed using the --no-binary option
- jupyter and notebook are required to run the notebooks
Standard installation with a compiler requires Cython. If you do not
have a compiler installed, the arch
should still install. You will
see a warning but this can be ignored. If you don't have a compiler,
numba
is strongly recommended.
Releases are available PyPI and can be installed with pip
.
pip install arch
This command should work whether you have a compiler installed or not.
If you want to install with the --no-binary
options, use
pip install arch --install-option="--no-binary"
You can alternatively install the latest version from GitHub
pip install git+https://github.com/bashtage/arch.git
--install-option="--no-binary"
can be used to disable compilation of
the extensions.
conda
users can install from my channel,
conda install arch -c bashtage
Building extension using the community edition of Visual Studio is well supported for Python 3.5+. Building on other combinations of Python/Windows is more difficult and is not necessary when Numba is installed since just-in-time compiled code (Numba) runs as fast as ahead-of-time compiled extensions.
The development requirements are:
- Cython (0.24+, if not using --no-binary)
- py.test (For tests)
- sphinx (to build docs)
- guzzle_sphinx_theme (to build docs)
- jupyter, notebook and nbsphinx (to build docs)
- If Cython is not installed, the package will be installed
as-if
--no-binary
was used. - Setup does not verify these requirements. Please ensure these are installed.