@inproceedings{li2022cats,
title={Cats: Complementary CNN and Transformer Encoders for Segmentation},
author={Li, Hao and Hu, Dewei and Liu, Han and Wang, Jiacheng and Oguz, Ipek},
booktitle={2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI)},
pages={1--5},
year={2022},
organization={IEEE}
}
@article{li2023cats,
title={CATS v2: Hybrid encoders for robust medical segmentation},
author={Li, Hao and Liu, Han and Hu, Dewei and Yao, Xing and Wang, Jiacheng and Oguz, Ipek},
journal={arXiv preprint arXiv:2308.06377},
year={2023}
}
train.py ------> train BTCV dataset with .jason file. (based on https://github.com/Project-MONAI/tutorials/blob/main/3d_segmentation/unetr_btcv_segmentation_3d.ipynb)
train_with_data_dir.py -----> changed data I/O, you can use a path that contains nifti files, in the following format
dataset_folder
└─train_set_image_folder
├── 1.nii.gz
└── 2.nii.gz
...
...
...
└── 100.nii.gz
└─train_set_label_folder
├── 1_label.nii.gz
└── 2_label.nii.gz
...
...
...
└── 100_label.nii.gz