Skip to content

Marchetz/KITTI-trajectory-prediction

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

14 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

KITTI Dataset for trajectory prediction

This repository contains the Kitti dataset for trajectory prediction used in "MANTRA: Memory Augmented Networks for Multiple Trajectory Prediction" published at CVPR2020 (arxiv)

KITTI dataset

To obtain samples, we collect 6 seconds chunks (2 seconds for past and 4 for future) in a sliding window fashion from all trajectories in the dataset, including the egovehicle.

For the training set, we use the following videos (KITTI enumeration): 5, 9, 11, 13, 14, 17, 27, 28, 48, 51, 56, 57, 59, 60, 84, 91. For the test set, the remaining videos: 1, 2, 15, 18, 29, 32, 52, 70.

We obtain 8613 top-view trajectories for training and 2907 for testing. Further details are in the paper (section 4.1).

FILE DESCRIPTION

The files dataset_KITTI_train.json and dataset_KITTI_test.json contain respectively the train and test set. The dataset_pytorch.py file is a script to create a pytorch-style dataset with class and methods to visualize the single examples.

The maps folder contains whole top-view context of a specific video. For each example, we crop an area relative (180x180 meters) to the present position of the agent to predict.

USAGE

To create a dataset and relative dataloader to train your own models:

from torch.utils.data import DataLoader
import dataset_pytorch
from tqdm import tqdm

data_train   = dataset_pytorch.TrackDataset('dataset_kitti_test.json')
train_loader = DataLoader(data_train, batch_size=32, num_workers=1, shuffle=True)
data_test    = dataset_pytorch.TrackDataset('dataset_kitti_test.json')
test_loader  = DataLoader(data_test, batch_size=32, num_workers=1, shuffle=False)

for step, (index, past, future, scene_one_hot, video, class, num_vehicles, step, scene) in enumerate(tqdm(train_loader)):
    #code to call own model
              

scene_one_hot ([dim_batch,180,180,4] dimension) is used for training while scene ([dim_batch,180,180,1] dimension) is used for qualitative visualization.

AUTHORS AND CONTACTS

  • Francesco Marchetti (MICC - Università degli Studi di Firenze)
  • Federico Becattini (MICC - Università degli Studi di Firenze)
  • Lorenzo Seidenari (MICC - Università degli Studi di Firenze)
  • Alberto Del Bimbo (MICC - Università degli Studi di Firenze)

For questions and explanations, you can contact by e-mail to [email protected]

If you use this code, please cite the paper:

@inproceedings{marchetti2020mantra,
  title={Mantra: Memory augmented networks for multiple trajectory prediction},
  author={Marchetti, Francesco and Becattini, Federico and Seidenari, Lorenzo and Bimbo, Alberto Del},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={7143--7152},
  year={2020}
}

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages