Skip to content

Digital Signal Processing Compiler in MLIR

License

Notifications You must be signed in to change notification settings

MPSLab-ASU/DSP_MLIR

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

DSP-MLIR Compiler

This repository contains the source code for DSP-MLIR, a compiler tailored for Digital Signal Processing (DSP) applications. It provides highly optimized tools and environments for building, optimizing, and running DSP operations like Fast Fourier Transforms (FFT), Finite Impulse Response (FIR) filters, and more.

The project is built on top of the LLVM infrastructure and leverages the MLIR (Multi-Level Intermediate Representation) framework for implementing DSP-specific operations and transformations.

Build Instructions

To build the DSP-MLIR compiler, follow these steps:

Step 1: Clone this repository and cd into the DSP-MLIR folder.

Step 2: Make and cd into the build directory using the following command:

mkdir build
cd build

Step 3: To build the project, run the following command:

cmake -G Ninja ../llvm \
   -DLLVM_ENABLE_PROJECTS=mlir \
   -DLLVM_BUILD_EXAMPLES=ON \
   -DLLVM_TARGETS_TO_BUILD="Native" \
   -DCMAKE_BUILD_TYPE=Release \
   -DLLVM_ENABLE_ASSERTIONS=ON

Step 4: After configuring the build, compile the project by running:

ninja

Running an Example

After the build completes, you can run an example to test the DSP operations. From the build directory:

ninja && ./bin/dsp1 ../mlir/test/Examples/DspExample/dsp_gain_op.py -emit=mlir-affine
ninja && ./bin/dsp1 ../mlir/test/Examples/DspExample/dsp_gain_op.py -emit=jit

About

Digital Signal Processing Compiler in MLIR

Resources

License

Code of conduct

Security policy

Stars

Watchers

Forks

Packages

No packages published

Languages

  • LLVM 35.5%
  • C++ 32.6%
  • C 16.8%
  • Assembly 8.8%
  • MLIR 2.5%
  • Python 1.8%
  • Other 2.0%