Skip to content

Commit

Permalink
update blueprint
Browse files Browse the repository at this point in the history
  • Loading branch information
LorenzoLuccioli committed Aug 7, 2024
1 parent 2685c64 commit ede6601
Show file tree
Hide file tree
Showing 2 changed files with 38 additions and 38 deletions.
64 changes: 32 additions & 32 deletions blueprint/src/sections/f_divergence.tex
Original file line number Diff line number Diff line change
Expand Up @@ -116,7 +116,7 @@ \subsection{Definition and basic properties}
\lean{ProbabilityTheory.fDiv_add_linear}
\leanok
\uses{def:fDiv}
For finite measures $\mu$ and $\nu$ with $\mu(\mathcal X) = \nu(\mathcal X)$, for all $a \ge 0$, $D_{f + a(x - 1)}(\mu, \nu) = D_{f}(\mu, \nu)$.
For finite measures $\mu$ and $\nu$ with $\mu(\mathcal X) = \nu(\mathcal X)$, for all $a \in \mathbb{R}$, $D_{f + a(x - 1)}(\mu, \nu) = D_{f}(\mu, \nu)$.
\end{lemma}

\begin{proof}\leanok
Expand Down Expand Up @@ -1095,19 +1095,19 @@ \subsubsection{General measurable spaces}

\begin{lemma}
\label{lem:fDiv_statInfoFun_eq}
%\lean{}
%\leanok
\lean{ProbabilityTheory.fDiv_statInfoFun_eq_StatInfo_of_nonneg_of_le, ProbabilityTheory.fDiv_statInfoFun_eq_StatInfo_of_nonneg_of_gt}
\leanok
\uses{def:fDiv, def:statInfoFun}
Let $a,b \in (0, +\infty)$ and let $\mu, \nu$ be two measures on $\mathcal X$.
Let $a,b \in [0, +\infty)$ and let $\mu, \nu$ be two measures on $\mathcal X$.
\begin{align*}
D_{\phi_{a,b}}(\mu, \nu)
&= \text{sign}(b-a)\frac{1}{2}(a \mu(\mathcal X) - b \nu(\mathcal X)) + \frac{1}{2}\nu\left[ \left\vert a \frac{d\mu}{d\nu} - b \right\vert \right] + \frac{1}{2}a \mu_{\perp \nu}(\mathcal X)
\: ,
\end{align*}
in which $\text{sign}(b-a)$ is $1$ if $b-a > 0$, $-1$ if $b-a < 0$ and the inequality is true for both values $1$ and $-1$ for $a=b$.
in which $\text{sign}(b-a)$ is $1$ if $b-a > 0$ and $-1$ if $b-a \le 0$.
\end{lemma}

\begin{proof}%\leanok
\begin{proof}\leanok
\uses{}
If $a \le b$,
\begin{align*}
Expand All @@ -1124,31 +1124,31 @@ \subsubsection{General measurable spaces}

\begin{corollary}
\label{cor:fDiv_statInfoFun_eq_statInfo}
%\lean{}
%\leanok
\lean{ProbabilityTheory.fDiv_statInfoFun_eq_StatInfo_of_nonneg}
\leanok
\uses{def:fDiv, def:statInfoFun, def:statInfo}
Let $a,b \in (0, +\infty)$ and let $\mu, \nu$ be two measures on $\mathcal X$.
Let $a,b \in [0, +\infty)$ and let $\mu, \nu$ be two measures on $\mathcal X$.
\begin{align*}
D_{\phi_{a,b}}(\mu, \nu) = \mathcal I_{(a,b)}(\mu, \nu) + \frac{1}{2} \left\vert a \mu(\mathcal X) - b \nu(\mathcal X) \right\vert + \text{sign}(b-a)\frac{1}{2}(a \mu(\mathcal X) - b \nu(\mathcal X))
\: .
\end{align*}
\end{corollary}

\begin{proof}%\leanok
\begin{proof}\leanok
\uses{lem:fDiv_statInfoFun_eq, cor:statInfo_eq_integral_abs}
Combine Lemma~\ref{lem:fDiv_statInfoFun_eq} and Corollary~\ref{cor:statInfo_eq_integral_abs}.
\end{proof}

\begin{lemma}
\label{lem:fDiv_phi_data_proc}
%\lean{}
%\leanok
\lean{ProbabilityTheory.fDiv_statInfoFun_comp_right_le}
\leanok
\uses{def:fDiv, def:statInfoFun}
Let $a,b \in (0, +\infty)$. Let $\mu, \nu$ be two measures on $\mathcal X$ and let $\kappa : \mathcal X \rightsquigarrow \mathcal Y$ be a Markov kernel.
Let $a,b \in [0, +\infty)$. Let $\mu, \nu$ be two finite measures on $\mathcal X$ and let $\kappa : \mathcal X \rightsquigarrow \mathcal Y$ be a Markov kernel.
Then $D_{\phi_{a,b}}(\kappa \circ \mu, \kappa \circ \nu) \le D_{\phi_{a,b}}(\mu, \nu)$.
\end{lemma}

\begin{proof}%\leanok
\begin{proof}\leanok
\uses{thm:data_proc_statInfo, cor:fDiv_statInfoFun_eq_statInfo}
By Corollary~\ref{cor:fDiv_statInfoFun_eq_statInfo},
\begin{align*}
Expand All @@ -1160,14 +1160,14 @@ \subsubsection{General measurable spaces}

\begin{theorem}[Data-processing]
\label{thm:fDiv_data_proc_2}
%\lean{}
%\leanok
\lean{ProbabilityTheory.fDiv_comp_right_le'}
\leanok
\uses{def:fDiv}
Let $\mu, \nu$ be two finite measures on $\mathcal X$ and let $\kappa : \mathcal X \rightsquigarrow \mathcal Y$ be a Markov kernel.
Then $D_f(\kappa \circ \mu, \kappa \circ \nu) \le D_f(\mu, \nu)$.
\end{theorem}

\begin{proof}%\leanok
\begin{proof}\leanok
\uses{thm:fDiv_eq_integral_eGamma, lem:fDiv_phi_data_proc}
By Theorem~\ref{thm:fDiv_eq_integral_eGamma},
\begin{align*}
Expand All @@ -1179,14 +1179,14 @@ \subsubsection{General measurable spaces}

\begin{theorem}
\label{thm:fDiv_le_compProd_2}
%\lean{}
%\leanok
\lean{ProbabilityTheory.le_fDiv_compProd'}
\leanok
\uses{def:fDiv}
Let $\mu, \nu$ be two finite measures on $\mathcal X$ and let $\kappa, \eta : \mathcal X \rightsquigarrow \mathcal Y$ be two Markov kernels.
Then $D_f(\mu, \nu) \le D_f(\mu \otimes \kappa, \nu \otimes \eta)$.
\end{theorem}

\begin{proof}%\leanok
\begin{proof}\leanok
\uses{thm:fDiv_data_proc_2}
Since $\kappa$ is a Markov kernel, $\mu$ is the composition of $\mu \otimes \kappa$ and the deterministic kernel for the function $(x,y) \mapsto x$. The same applies for $\nu$ and $\nu \otimes \eta$.
The result is then an application of the data-processing inequality, Theorem~\ref{thm:fDiv_data_proc_2}.
Expand All @@ -1195,29 +1195,29 @@ \subsubsection{General measurable spaces}

\begin{lemma}[Composition-product with a kernel]
\label{thm:fDiv_compProd_right_2}
%\lean{}
%\leanok
\lean{ProbabilityTheory.fDiv_compProd_right'}
\leanok
\uses{def:fDiv}
Let $\mu, \nu$ be two finite measures on $\mathcal X$ and let $\kappa : \mathcal X \rightsquigarrow \mathcal Y$ be a Markov kernel.
Then $D_f(\mu \otimes \kappa, \nu \otimes \kappa) = D_f(\mu, \nu)$.
\end{lemma}

\begin{proof}%\leanok
\begin{proof}\leanok
\uses{thm:fDiv_le_compProd_2, thm:fDiv_data_proc_2}
By Theorem~\ref{thm:fDiv_le_compProd_2}, $D_f(\mu, \nu) \le D_f(\mu \otimes \kappa, \nu \otimes \kappa)$.
For the reverse inequality, remark that $\mu \otimes \kappa = (\text{id} \times \kappa) \circ \mu$ where $\text{id}$ is the identity kernel and apply the data-processing inequality (Theorem~\ref{thm:fDiv_data_proc_2}).
\end{proof}

\begin{theorem}
\label{thm:fDiv_comp_le_compProd_2}
%\lean{}
%\leanok
\lean{ProbabilityTheory.fDiv_comp_le_compProd'}
\leanok
\uses{def:fDiv}
Let $\mu, \nu$ be two finite measures on $\mathcal X$ and let $\kappa, \eta : \mathcal X \rightsquigarrow \mathcal Y$ be two finite kernels.
Then $D_f(\kappa \circ \mu, \eta \circ \nu) \le D_f(\mu \otimes \kappa, \nu \otimes \eta)$.
\end{theorem}

\begin{proof}%\leanok
\begin{proof}\leanok
\uses{thm:fDiv_data_proc_2}
$\kappa \circ \mu$ is the composition of $\mu \otimes \kappa$ and the deterministic kernel for the function $(x,y) \mapsto y$. The same applies for $\eta \circ \nu$ and $\nu \otimes \eta$.
The result is then an application of the data-processing inequality, Theorem~\ref{thm:fDiv_data_proc_2}.
Expand All @@ -1226,30 +1226,30 @@ \subsubsection{General measurable spaces}

\begin{theorem}[Conditioning increases f-divergence]
\label{thm:fDiv_comp_le_condFDiv_2}
%\lean{}
%\leanok
\lean{ProbabilityTheory.fDiv_comp_le_compProd_right'}
\leanok
\uses{def:fDiv, def:condFDiv}
Let $\mu$ be a finite measure $\mathcal X$ and let $\kappa, \eta : \mathcal X \rightsquigarrow \mathcal Y$ be two finite kernels.
Then $D_f(\kappa \circ \mu, \eta \circ \mu) \le D_f(\mu \otimes \kappa, \mu \otimes \eta)$~.
\end{theorem}

\begin{proof}%\leanok
\begin{proof}\leanok
\uses{thm:fDiv_comp_le_compProd_2}
This is a particular case of Theorem~\ref{thm:fDiv_comp_le_compProd_2}.
\end{proof}


\begin{theorem}[Marginals]
\label{thm:fDiv_fst_le_2}
%\lean{}
%\leanok
\lean{ProbabilityTheory.fDiv_fst_le', ProbabilityTheory.fDiv_snd_le'}
\leanok
\uses{def:fDiv}
Let $\mu$ and $\nu$ be two measures on $\mathcal X \times \mathcal Y$, and let $\mu_X, \nu_X$ be their marginals on $\mathcal X$.
Then $D_f(\mu_X, \nu_X) \le D_f(\mu, \nu)$.
Similarly, for $\mu_Y, \nu_Y$ the marginals on $\mathcal Y$, $D_f(\mu_Y, \nu_Y) \le D_f(\mu, \nu)$.
\end{theorem}

\begin{proof}%\leanok
\begin{proof}\leanok
\uses{thm:fDiv_data_proc_2}
The measure $\mu_X$ is the composition of $\mu$ and the deterministic kernel for the function $(x,y) \mapsto x$, and similarly $\mu_Y$ is the composition of $\mu$ and a deterministic kernel.
The results are both applications of the data-processing inequality, Theorem~\ref{thm:fDiv_data_proc_2}.
Expand Down
12 changes: 6 additions & 6 deletions blueprint/src/sections/stat_div.tex
Original file line number Diff line number Diff line change
Expand Up @@ -200,8 +200,8 @@ \section{Statistical divergences}

\begin{corollary}
\label{cor:statInfo_eq_integral_abs}
%\lean{}
%\leanok
\lean{ProbabilityTheory.toReal_statInfo_eq_integral_abs}
\leanok
\uses{def:statInfo}
For finite measures $\mu, \nu$ and $\xi \in \mathcal M(\{0,1\})$,
\begin{align*}
Expand All @@ -211,7 +211,7 @@ \section{Statistical divergences}
\end{align*}
\end{corollary}

\begin{proof}%\leanok
\begin{proof}\leanok
\uses{thm:statInfo_eq_integral}
Start from Theorem~\ref{thm:statInfo_eq_integral}, then use $\max\{a,b\} = \frac{1}{2}\left( a + b + \vert a - b \vert \right)$~.
The two cases of Theorem~\ref{thm:statInfo_eq_integral} lead to the same expression.
Expand All @@ -220,8 +220,8 @@ \section{Statistical divergences}

\begin{lemma}
\label{lem:statInfo_eq_sub_inf_event}
%\lean{}
%\leanok
\lean{ProbabilityTheory.statInfo_eq_min_sub_iInf_measurableSet}
\leanok
\uses{def:statInfo}
For finite measures $\mu, \nu$ and $\xi \in \mathcal M(\{0,1\})$,
\begin{align*}
Expand All @@ -231,7 +231,7 @@ \section{Statistical divergences}
\end{align*}
\end{lemma}

\begin{proof}%\leanok
\begin{proof}\leanok
\uses{lem:bayesBinaryRisk_eq_event}
This is a direct application of Lemma~\ref{lem:bayesBinaryRisk_eq_event}.
\end{proof}
Expand Down

0 comments on commit ede6601

Please sign in to comment.