Skip to content

Commit

Permalink
simplify proof of f_rnDeriv_le_add
Browse files Browse the repository at this point in the history
  • Loading branch information
LorenzoLuccioli committed Sep 5, 2024
1 parent df164b0 commit 8b32ce6
Showing 1 changed file with 8 additions and 18 deletions.
26 changes: 8 additions & 18 deletions TestingLowerBounds/FDiv/CompProd.lean
Original file line number Diff line number Diff line change
Expand Up @@ -374,26 +374,16 @@ lemma f_rnDeriv_le_add [CountableOrCountablyGenerated α β]
simp only [ENNReal.toReal_mul]
let κ' := η.withDensity (κ.rnDeriv η)
calc f ((∂μ/∂ν) a).toReal
_ = f (((∂μ/∂ν) a).toReal * (κ a .univ).toReal) := by simp
_ = f (((∂μ/∂ν) a).toReal * (κ' a .univ).toReal
+ ((∂μ/∂ν) a).toReal * (κ.singularPart η a .univ).toReal) := by
conv_lhs => rw [← κ.rnDeriv_add_singularPart η]
rw [← mul_add, ← ENNReal.toReal_add (measure_ne_top _ _) (measure_ne_top _ _)]
congr
_ ≤ f (((∂μ/∂ν) a).toReal * (κ' a .univ).toReal)
+ (derivAtTop f).toReal * ((∂μ/∂ν) a).toReal * (1 - (κ' a .univ).toReal) := by
refine le_add_derivAtTop' hf_cvx h_deriv_top ENNReal.toReal_nonneg ENNReal.toReal_nonneg ?_
calc (κ' a .univ).toReal
_ ≤ (κ a .univ).toReal := by
gcongr
· exact measure_ne_top _ _
· exact κ.withDensity_rnDeriv_le η a .univ
_ = 1 := by simp
_ = f (((∂μ/∂ν) a).toReal * (κ' a .univ).toReal)
+ (derivAtTop f).toReal * ((∂μ/∂ν) a).toReal * (κ.singularPart η a .univ).toReal := by
congr
norm_cast
unfold_let κ'
rw [sub_eq_iff_eq_add, ← ENNReal.one_toReal, ← measure_univ (μ := κ a)]
conv_lhs => rw [← κ.rnDeriv_add_singularPart η, add_comm]
simp only [Kernel.coe_add, Pi.add_apply, Measure.coe_add]
rw [ENNReal.toReal_add]
· exact measure_ne_top _ _
· exact measure_ne_top _ _
refine mul_assoc (EReal.toReal _) _ _ ▸ le_add_derivAtTop'' hf_cvx h_deriv_top ?_ ?_
<;> exact mul_nonneg ENNReal.toReal_nonneg ENNReal.toReal_nonneg

lemma integrable_f_rnDeriv_of_integrable_compProd' [CountableOrCountablyGenerated α β]
(μ ν : Measure α) [IsFiniteMeasure μ] [IsFiniteMeasure ν]
Expand Down

0 comments on commit 8b32ce6

Please sign in to comment.