Skip to content
This repository has been archived by the owner on Dec 14, 2023. It is now read-only.
/ recog Public archive
forked from rapid7/recog

Pattern recognition for hosts, services, and content

License

Notifications You must be signed in to change notification settings

LogentriesCommunity/recog

 
 

Repository files navigation

Recog: A Recognition Framework

CI Workflow Verify Workflow

Recog is a framework for identifying products, services, operating systems, and hardware by matching fingerprints against data returned from various network probes. Recog makes it simple to extract useful information from web server banners, snmp system description fields, and a whole lot more.

Recog is open source, please see the LICENSE file for more information.

Table of Contents

  1. Repository split
    1. Default branch rename
  2. Recog library language implementations
    1. Feature parity
  3. Installation
  4. Maturity
  5. Fingerprints
  6. Contributing

Repository split

On March 31, 2022, the Recog content - XML fingerprint files and utilities - were split from the Recog framework library implementation. The original Recog repository now contains the Recog content and the Recog-Ruby repository contains the Ruby language implementation. The Recog content is included in Recog-Ruby as a git submodule and is nested under the recog directory. All post-split Recog gem versions equal or greater than 3.0.0 will: 1. contain the XML fingerprint directory under the recog directory, and 2. only include the recog_match tool since the other tools are focused on fingerprint management.

^back to top

Default branch rename

Along with the repository split the default branch was renamed from master to main. Any clones created prior to these changes will have to be manually updated in your local environment. If you have a fork, navigate to your fork's settings and follow the instructions on renaming a branch to change the default branch to main.

git branch -m master main
git fetch origin
git branch -u origin/main main
git remote set-head origin -a

Optionally, run the following command to remove tracking references to the old branch name.

# dry-run to confirm stale references that will be deleted before proceeding
git remote prune origin --dry-run
git remote prune origin

If you previously used the upstream tracking branch upstream-master run the following commands to remove the old branch and create a new upstream tracking branch.

git branch -d upstream-master
git checkout -b upstream-main --track upstream/main

Optionally, run the following command to remove the tracking references to the old upstream branch name.

# dry-run to confirm stale references that will be deleted before proceeding
git remote prune upstream --dry-run
git remote prune upstream

^back to top

Recog library language implementations

^back to top

Feature parity

Feature ✨ rapid7/recog-ruby rapid7/recog-java runZeroInc/recog-go
Fingerprint verification CLI tool
Fingerprint match CLI tool
Supports base64 encoded examples
Supports filesystem-based external examples
Fingerprint match CPE param interpolation

^back to top

Installation

Recog consists of both XML fingerprint files and an assortment of code, mostly in Ruby, that makes it easy to develop, test, and use the contained fingerprints. In order to use the included ruby code, a recent version of Ruby (2.31+) is required, along with Rubygems and the bundler gem. Once these dependencies are in place, use the following commands to grab the latest source code and install any additional dependencies.

$ git clone [email protected]:rapid7/recog.git
$ cd recog
$ bundle install

^back to top

Maturity

Please note that while the XML fingerprints themselves are quite stable and well-tested, the Ruby codebase is still fairly new and subject to change quickly. Please contact us (research[at]rapid7.com) before leveraging the Recog code within any production projects.

^back to top

Fingerprints

The fingerprints within Recog are stored in XML files, each of which is designed to match a specific protocol response string or field. For example, the file ssh_banners.xml can determine the os, vendor, and sometimes hardware product by matching the initial SSH daemon banner string.

A fingerprint file consists of an XML document like the following:

<fingerprints matches="ssh.banner">
  <fingerprint pattern="^RomSShell_([\d\.]+)$">
    <description>Allegro RomSShell SSH</description>
    <example service.version="4.62">RomSShell_4.62</example>
    <param pos="0" name="service.vendor" value="Allegro"/>
    <param pos="0" name="service.product" value="RomSShell"/>
    <param pos="1" name="service.version"/>
  </fingerprint>
</fingerprints>

The first line should always consist of the XML version declaration. The first element should always be a fingerprints block with a matches attribute indicating what data this fingerprint file is supposed to match. The matches attribute is normally in the form of protocol.field.

Inside of the fingerprints element there should be one or more fingerprint elements. Every fingerprint must contain a pattern attribute, which contains the regular expression to be used to match against the data. An optional flags attribute can be specified to control how the regular expression is to be interpreted. See the Recog documentation for FLAG_MAP for more information.

Inside of the fingerprint, a description element should contain a human-readable string describing this fingerprint.

At least one example element should be present, however multiple example elements are preferred. These elements are used as part of the test coverage present in rspec which validates that the provided data matches the specified regular expression. Additionally, if the fingerprint is using the param elements to extract field values from the data (described next), you can add these expected extractions as attributes for the example elements. In the example above, this:

<example service.version="4.62">RomSShell_4.62</example>

tests that RomSShell_4.62 matches the provided regular expression and that the value of service.version is 4.62.

The param elements contain a pos attribute, which indicates what capture field from the pattern should be extracted, or 0 for a static string. The name attribute is the key that will be reported in the case of a successful match and the value will either be a static string for pos values of 0 or missing and taken from the captured field.

The example string can be base64 encoded to permit the use of unprintable characters. To signal this to Recog an _encoding attribute with the value of base64 is added to the example element. Based64 encoded text that is longer than 80 characters may be wrapped with newlines as shown below to aid in readability.

<example _encoding="base64">
  dGllczGEAAAAlQQWMS4yLjg0MC4xMTM1NTYuMS40LjgwMAQuZGF0YS5yZW1vdmVkLjCEAAAAK
  AQdZG9tYWluQ29udHJvbGxlckZ1bmN0aW9uYWxpdHkxhAAAAAMEATc=
</example>

Additionally, examples can be placed in a directory with the same base name as the XML file, in the same directory as the XML file:

xml/services.xml
xml/services/file1
xml/services/file2
...

They can then be loaded using the _filename attribute:

<example _filename="file1"/>

This is useful for long examples.

^back to top

Contributing

The users and maintainers of Recog would greatly appreciate any contributions you can make to the project. For guidelines and instructions please see CONTRIBUTING.MD

^back to top

About

Pattern recognition for hosts, services, and content

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Ruby 52.7%
  • Python 24.5%
  • Gherkin 20.2%
  • Shell 1.5%
  • XSLT 1.1%