Towards Better Data Exploitation In Self-Supervised Monocular Depth Estimation [paper link]
Jinfeng Liu, Lingtong Kong, Jie Yang, Wei Liu
Accepted by IEEE Robotics and Automation Letters (RA-L), 2023
BDEdepth (HRNet18 640x192 KITTI)This is the PyTorch implementation for BDEdepth. We build it based on the DDP version of Monodepth2 (see Monodepth2-DDP), which has several features:
- DDP training mode
- Resume from an interrupted training automatically
- Evaluate and log after each epoch
- KITTI training and evaluation
- NYUv2 training and evaluation
- Cityscapes training and evaluation
- Make3D evaluation
If you find our work useful in your research please consider citing our paper:
@ARTICLE{10333263,
author={Liu, Jinfeng and Kong, Lingtong and Yang, Jie and Liu, Wei},
journal={IEEE Robotics and Automation Letters},
title={Towards Better Data Exploitation in Self-Supervised Monocular Depth Estimation},
year={2024},
volume={9},
number={1},
pages={763-770},
doi={10.1109/LRA.2023.3337594}}
Install the dependencies with:
pip install torch==1.9.1+cu111 torchvision==0.10.1+cu111 torchaudio==0.9.1 -f https://download.pytorch.org/whl/torch_stable.html
pip install scikit-image timm thop yacs opencv-python h5py joblib
We experiment with PyTorch 1.9.1, CUDA 11.1, Python 3.7. Other torch versions may also be okay.
For KITTI dataset, you can prepare them as done in Monodepth2. Note that we directly train with the raw png images and do not convert them to jpgs. You also need to generate the groundtruth depth maps before training since the code will evaluate after each epoch. For the raw KITTI groundtruth (eigen
eval split), run the following command. This will generate gt_depths.npz
file in the folder splits/kitti/eigen/
.
python export_gt_depth.py --data_path /home/datasets/kitti_raw_data --split eigen
Or if you want to use the improved KITTI groundtruth (eigen_benchmark
eval split), please directly download it in this link. And then move the downloaded file (gt_depths.npz
) to the folder splits/kitti/eigen_benchmark/
.
For NYUv2 dataset, you can download the training and testing datasets as done in StructDepth.
For Make3D dataset, you can download it from here.
For Cityscapes dataset, we follow the instructions in ManyDepth. First Download leftImg8bit_sequence_trainvaltest.zip
and camera_trainvaltest.zip
in its website, and unzip them into the folder /path/to/cityscapes
. Then preprocess CityScapes dataset using the followimg command:
python prepare_cityscapes.py \
--img_height 512 \
--img_width 1024 \
--dataset_dir /home/datasets/cityscapes \
--dump_root /home/datasets/cityscapes_preprocessed \
--seq_length 3 \
--num_threads 8
Remember to modify --dataset_dir
and --dump_root
to your own. The ground truth depth files are provided by ManyDepth in this link, which were converted from pixel disparities using intrinsics and the known baseline. Download this and unzip into splits/cityscapes
You can download model weights in this link, including 5 checkpoint files:
- Pretrained HRNet18 on ImageNet:
HRNet_W18_C_cosinelr_cutmix_300epoch.pth.tar
- Our final KITTI model (640x192) using HRNet18 backone:
kitti_hrnet18_640x192.pth
- Our final KITTI model (640x192) using ResNet18 backone:
kitti_resnet18_640x192.pth
- Our final Cityscapes model (512x192) using HRNet18 backbone:
cs_hrnet18_512x192.pth
- Our final Cityscapes model (512x192) using ResNet18 backbone:
cs_resnet18_512x192.pth
Note: We additionally train and evaluate on Cityscapes here. The results are listed as follows.
model | abs rel | sq rel | rmse | rmse log | a1 | a2 | a3 |
---|---|---|---|---|---|---|---|
Monodepth2 (reported in ManyDepth) | 0.129 | 1.569 | 6.876 | 0.187 | 0.849 | 0.957 | 0.983 |
ManyDepth | 0.114 | 1.193 | 6.223 | 0.170 | 0.875 | 0.967 | 0.989 |
Ours(ResNet18) | 0.116 | 1.107 | 6.061 | 0.168 | 0.868 | 0.965 | 0.989 |
Ours(HRNet18) | 0.112 | 1.027 | 5.862 | 0.163 | 0.874 | 0.968 | 0.990 |
Before training, move the pretrained HRNet18 weights, HRNet_W18_C_cosinelr_cutmix_300epoch.pth.tar
, to the folder BDEdepth/hrnet_IN_pretrained
.
cd /path/to/BDEdepth
mkdir hrnet_IN_pretrained
mv /path/to/HRNet_W18_C_cosinelr_cutmix_300epoch.pth.tar ./hrnet_IN_pretrained
And you can see the training scripts in run_kitti.sh, run_nyu.sh and run_cityscapes.sh. Take the KITTI script as an example:
# CUDA_VISIBLE_DEVICES=0 python train.py \
CUDA_VISIBLE_DEVICES=0,1 python -m torch.distributed.launch --nproc_per_node=2 train.py \
--data_path /home/datasets/kitti_raw_data \
--dataset kitti \
--log_dir /home/jinfengliu/logs \
--exp_name mono_kitti \
--backbone hrnet \
--num_layers 18 \
--width 640 \
--height 192 \
--num_scales 1 \
--batch_size 10 \
--lr_sche_type step \
--learning_rate 1e-4 \
--eta_min 5e-6 \
--num_epochs 20 \
--decay_step 15 \
--decay_rate 0.1 \
--log_frequency 400 \
--save_frequency 400 \
--resume \
--use_local_crop \
--use_patch_reshuffle \
# --pretrained_path xxxx/ckpt.pth
Use CUDA_VISIBLE_DEVICES=0 python train.py
to train with a single GPU. If you want to train with two or more GPUs, then use CUDA_VISIBLE_DEVICES=0,1 python -m torch.distributed.launch --nproc_per_node=2 train.py
for DDP training.
Use --data_path
flag to specify the dataset folder.
Use --log_dir
flag to specify the logging folder.
Use --exp_name
flag to specify the experiment name.
All output files (checkpoints, logs and tensorboard) will be saved in the directory {log_dir}/{exp_name}
.
Use --backbone
flag to choose the depth encoder backbone, resnet or hrnet.
Use --use_local_crop
flag to enable the resizing-cropping augmentation.
Use --use_patch_reshuffle
flag to enable the splitting-permuting augmentation.
Use --pretrained_path
flag to load a pretrained checkpoint if necessary.
Use --split
flag to specify the training split on KITTI (see Monodepth2), and default is eigen_zhou.
Look at options.py to see the range of other training options.
You can see the evaluation script in evaluate.sh.
CUDA_VISIBLE_DEVICES=0 python evaluate_depth.py \
--pretrained_path ./kitti_hrnet18_640x192.pth \
--backbone hrnet \
--num_layers 18 \
--batch_size 12 \
--width 640 \
--height 192 \
--kitti_path /home/datasets/kitti_raw_data \
--make3d_path /home/datasets/make3d \
--cityscapes_path /home/datasets/cityscapes \
--nyuv2_path /home/datasets/nyu_v2
# --post_process
This script will evaluate on KITTI (both raw and improved GT), NYUv2, Make3D and Cityscapes together. If you don't want to evaluate on some of these datasets, for example KITTI, just do not specify the corresponding --kitti_path
flag. It will only evaluate on the datasets which you have specified a path flag.
If you want to evalute with post-processing, add the --post_process
flag.
You can predict scaled disparity for a single image with:
python test_simple.py --image_path folder/test_image.jpg --pretrained_path ./kitti_hrnet18_640x192.pth --backbone hrnet --height 192 --width 640 --save_npy
The --image_path
flag can also be a directory containing several images. In this setting, the script will predict all the images (use --ext
to specify png or jpg) in the directory:
python test_simple.py --image_path folder --pretrained_path ./kitti_hrnet18_640x192.pth --backbone hrnet --height 192 --width 640 --ext png --save_npy
python test_video.py --image_path folder --pretrained_path ./kitti_hrnet18_640x192.pth --backbone hrnet --height 192 --width 640 --ext png
Here the --image_path
flag should be a directory containing several video frames. Note that these video frame files should be named in an ascending numerical order. For example, the first frame is named as 0000.png
, the second frame is named as 0001.png
, and etc. Then the script will output a GIF file.
We have used codes from other wonderful open-source projects, SfMLearner, Monodepth2, ManyDepth, StructDepth, PlaneDepth and RA-Depth. Thanks for their excellent works!