Skip to content

[IEEE RA-L 2023] Towards Better Data Exploitation In Self-Supervised Monocular Depth Estimation

License

Notifications You must be signed in to change notification settings

LiuJF1226/BDEdepth

Repository files navigation

BDEdepth

Towards Better Data Exploitation In Self-Supervised Monocular Depth Estimation [paper link]

Jinfeng Liu, Lingtong Kong, Jie Yang, Wei Liu

Accepted by IEEE Robotics and Automation Letters (RA-L), 2023

example input output gif

BDEdepth (HRNet18 640x192 KITTI)

Table of Contents

Description

This is the PyTorch implementation for BDEdepth. We build it based on the DDP version of Monodepth2 (see Monodepth2-DDP), which has several features:

  • DDP training mode
  • Resume from an interrupted training automatically
  • Evaluate and log after each epoch
  • KITTI training and evaluation
  • NYUv2 training and evaluation
  • Cityscapes training and evaluation
  • Make3D evaluation

If you find our work useful in your research please consider citing our paper:

@ARTICLE{10333263,
  author={Liu, Jinfeng and Kong, Lingtong and Yang, Jie and Liu, Wei},
  journal={IEEE Robotics and Automation Letters}, 
  title={Towards Better Data Exploitation in Self-Supervised Monocular Depth Estimation}, 
  year={2024},
  volume={9},
  number={1},
  pages={763-770},
  doi={10.1109/LRA.2023.3337594}}

Setup

Install the dependencies with:

pip install torch==1.9.1+cu111 torchvision==0.10.1+cu111 torchaudio==0.9.1 -f https://download.pytorch.org/whl/torch_stable.html

pip install scikit-image timm thop yacs opencv-python h5py joblib

We experiment with PyTorch 1.9.1, CUDA 11.1, Python 3.7. Other torch versions may also be okay.

Preparing datasets

KITTI

For KITTI dataset, you can prepare them as done in Monodepth2. Note that we directly train with the raw png images and do not convert them to jpgs. You also need to generate the groundtruth depth maps before training since the code will evaluate after each epoch. For the raw KITTI groundtruth (eigen eval split), run the following command. This will generate gt_depths.npz file in the folder splits/kitti/eigen/.

python export_gt_depth.py --data_path /home/datasets/kitti_raw_data --split eigen

Or if you want to use the improved KITTI groundtruth (eigen_benchmark eval split), please directly download it in this link. And then move the downloaded file (gt_depths.npz) to the folder splits/kitti/eigen_benchmark/.

NYUv2 and Make3D

For NYUv2 dataset, you can download the training and testing datasets as done in StructDepth.

For Make3D dataset, you can download it from here.

Cityscapes

For Cityscapes dataset, we follow the instructions in ManyDepth. First Download leftImg8bit_sequence_trainvaltest.zip and camera_trainvaltest.zip in its website, and unzip them into the folder /path/to/cityscapes. Then preprocess CityScapes dataset using the followimg command:

python prepare_cityscapes.py \
--img_height 512 \
--img_width 1024 \
--dataset_dir /home/datasets/cityscapes \
--dump_root /home/datasets/cityscapes_preprocessed \
--seq_length 3 \
--num_threads 8

Remember to modify --dataset_dir and --dump_root to your own. The ground truth depth files are provided by ManyDepth in this link, which were converted from pixel disparities using intrinsics and the known baseline. Download this and unzip into splits/cityscapes

Weights

You can download model weights in this link, including 5 checkpoint files:

  • Pretrained HRNet18 on ImageNet: HRNet_W18_C_cosinelr_cutmix_300epoch.pth.tar
  • Our final KITTI model (640x192) using HRNet18 backone: kitti_hrnet18_640x192.pth
  • Our final KITTI model (640x192) using ResNet18 backone: kitti_resnet18_640x192.pth
  • Our final Cityscapes model (512x192) using HRNet18 backbone: cs_hrnet18_512x192.pth
  • Our final Cityscapes model (512x192) using ResNet18 backbone: cs_resnet18_512x192.pth

Note: We additionally train and evaluate on Cityscapes here. The results are listed as follows.

model abs rel sq rel rmse rmse log a1 a2 a3
Monodepth2 (reported in ManyDepth) 0.129 1.569 6.876 0.187 0.849 0.957 0.983
ManyDepth 0.114 1.193 6.223 0.170 0.875 0.967 0.989
Ours(ResNet18) 0.116 1.107 6.061 0.168 0.868 0.965 0.989
Ours(HRNet18) 0.112 1.027 5.862 0.163 0.874 0.968 0.990

Training

Before training, move the pretrained HRNet18 weights, HRNet_W18_C_cosinelr_cutmix_300epoch.pth.tar, to the folder BDEdepth/hrnet_IN_pretrained.

cd /path/to/BDEdepth
mkdir hrnet_IN_pretrained
mv /path/to/HRNet_W18_C_cosinelr_cutmix_300epoch.pth.tar ./hrnet_IN_pretrained

And you can see the training scripts in run_kitti.sh, run_nyu.sh and run_cityscapes.sh. Take the KITTI script as an example:

# CUDA_VISIBLE_DEVICES=0 python train.py \

CUDA_VISIBLE_DEVICES=0,1 python -m torch.distributed.launch --nproc_per_node=2 train.py \
--data_path /home/datasets/kitti_raw_data \
--dataset kitti \
--log_dir /home/jinfengliu/logs \
--exp_name mono_kitti \
--backbone hrnet \
--num_layers 18 \
--width 640 \
--height 192 \
--num_scales 1 \
--batch_size 10 \
--lr_sche_type step \
--learning_rate 1e-4 \
--eta_min 5e-6 \
--num_epochs 20 \
--decay_step 15 \
--decay_rate 0.1 \
--log_frequency 400 \
--save_frequency 400 \
--resume \
--use_local_crop \
--use_patch_reshuffle \
# --pretrained_path xxxx/ckpt.pth

Use CUDA_VISIBLE_DEVICES=0 python train.py to train with a single GPU. If you want to train with two or more GPUs, then use CUDA_VISIBLE_DEVICES=0,1 python -m torch.distributed.launch --nproc_per_node=2 train.py for DDP training.

Use --data_path flag to specify the dataset folder.

Use --log_dir flag to specify the logging folder.

Use --exp_name flag to specify the experiment name.

All output files (checkpoints, logs and tensorboard) will be saved in the directory {log_dir}/{exp_name}.

Use --backbone flag to choose the depth encoder backbone, resnet or hrnet.

Use --use_local_crop flag to enable the resizing-cropping augmentation.

Use --use_patch_reshuffle flag to enable the splitting-permuting augmentation.

Use --pretrained_path flag to load a pretrained checkpoint if necessary.

Use --split flag to specify the training split on KITTI (see Monodepth2), and default is eigen_zhou.

Look at options.py to see the range of other training options.

Evaluation

You can see the evaluation script in evaluate.sh.

CUDA_VISIBLE_DEVICES=0 python evaluate_depth.py \
--pretrained_path ./kitti_hrnet18_640x192.pth \
--backbone hrnet \
--num_layers 18 \
--batch_size 12 \
--width 640 \
--height 192 \
--kitti_path /home/datasets/kitti_raw_data \
--make3d_path /home/datasets/make3d \
--cityscapes_path /home/datasets/cityscapes \
--nyuv2_path /home/datasets/nyu_v2 
# --post_process

This script will evaluate on KITTI (both raw and improved GT), NYUv2, Make3D and Cityscapes together. If you don't want to evaluate on some of these datasets, for example KITTI, just do not specify the corresponding --kitti_path flag. It will only evaluate on the datasets which you have specified a path flag.

If you want to evalute with post-processing, add the --post_process flag.

Prediction

Prediction for a single image

You can predict scaled disparity for a single image with:

python test_simple.py --image_path folder/test_image.jpg --pretrained_path ./kitti_hrnet18_640x192.pth --backbone hrnet --height 192 --width 640 --save_npy

The --image_path flag can also be a directory containing several images. In this setting, the script will predict all the images (use --ext to specify png or jpg) in the directory:

python test_simple.py --image_path folder --pretrained_path ./kitti_hrnet18_640x192.pth --backbone hrnet --height 192 --width 640 --ext png --save_npy

Prediction for a video

python test_video.py --image_path folder --pretrained_path ./kitti_hrnet18_640x192.pth --backbone hrnet --height 192 --width 640 --ext png

Here the --image_path flag should be a directory containing several video frames. Note that these video frame files should be named in an ascending numerical order. For example, the first frame is named as 0000.png, the second frame is named as 0001.png, and etc. Then the script will output a GIF file.

Acknowledgement

We have used codes from other wonderful open-source projects, SfMLearner, Monodepth2, ManyDepth, StructDepth, PlaneDepth and RA-Depth. Thanks for their excellent works!

About

[IEEE RA-L 2023] Towards Better Data Exploitation In Self-Supervised Monocular Depth Estimation

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published