Skip to content

An implementation of DetNet: A Backbone network for Object Detection.

License

Notifications You must be signed in to change notification settings

LightToYang/DetNet_pytorch

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

An implementation of DetNet: A Backbone network for Object Detection. Due to the short time, I only trained and tested on pascal voc dataset. It proved that the performance of detnet59 is indeed better than FPN101.

Introduction

Firstly, I spent about one week training detnet59 on the ImageNet dataset .The classification performance of detnet59 is a little better than the original resnet50. Then i used the pretrained detnet59 to train and test on pascal voc.

Based on FPN_Pytorch, i change FPN101 to detnet59.

Benchmarking

I benchmark this code thoroughly on pascal voc2007 and 07+12. Below are the results:

0). ImageNet(test on validation dataset)

backbone Top1 error
pytorch resnet50 23.9
detnet59 in this code 23.8
detnet59 in the original paper 23.5

1). PASCAL VOC 2007 (Train/Test: 07trainval/07test, scale=600, ROI Align)

model GPUs Batch Size lr lr_decay max_epoch Speed/epoch Memory/GPU mAP
ResNet-101 1 GTX 1080 (Ti) 2 1e-3 10 12 1.44hr 6137MB 75.7
DetNet59 1 GTX 1080 (Ti) 2 1e-3 10 12 1.07hr 5412MB 75.9

2). PASCAL VOC 07+12 (Train/Test: 07+12trainval/07test, scale=600, ROI Align)

model GPUs Batch Size lr lr_decay max_epoch Speed/epoch Memory/GPU mAP
ResNet-101 1 GTX 1080 (Ti) 1 1e-3 10 12 3.96hr 9011MB 80.5
DetNet59 1 GTX 1080 (Ti) 1 1e-3 10 12 2.33hr 8015MB 80.7

Preparation

First of all, clone the code

git clone https://github.com/guoruoqian/DetNet_Pytorch.git

Then, create a folder:

cd DetNet_Pytorch && mkdir data

prerequisites

  • Python 2.7 or 3.6
  • Pytorch 0.2.0 or higher
  • CUDA 8.0 or higher
  • tensorboardX

Data Preparation

  • VOC2007: Please follow the instructions in py-faster-rcnn to prepare VOC datasets. Actually, you can refer to any others. After downloading the data, creat softlinks in the folder data/.
  • VOC 07 + 12: Please follow the instructions in YuwenXiong/py-R-FCN . I think this instruction is more helpful to prepare VOC datasets.

Pretrained Model

 You can download the detnet59 model which i trained on ImageNet from:

Download it and put it into the data/pretrained_model/.

Compilation

As pointed out by ruotianluo/pytorch-faster-rcnn, choose the right -arch in make.sh file, to compile the cuda code:

GPU model Architecture
TitanX (Maxwell/Pascal) sm_52
GTX 960M sm_50
GTX 1080 (Ti) sm_61
Grid K520 (AWS g2.2xlarge) sm_30
Tesla K80 (AWS p2.xlarge) sm_37

Install all the python dependencies using pip:

pip install -r requirements.txt

Compile the cuda dependencies using following simple commands:

cd lib
sh make.sh

It will compile all the modules you need, including NMS, ROI_Pooing, ROI_Align and ROI_Crop. The default version is compiled with Python 2.7, please compile by yourself if you are using a different python version.

Usage

train voc2007:

CUDA_VISIBLE_DEVICES=3 python3 trainval_net.py exp_name --dataset pascal_voc --net detnet59 --bs 2 --nw 4 --lr 1e-3 --epochs 12 --save_dir weights --cuda --use_tfboard True

test voc2007:

CUDA_VISIBLE_DEVICES=3 python3 test_net.py exp_name --dataset pascal_voc --net detnet59 --checksession 1 --checkepoch 7 --checkpoint 5010 --cuda --load_dir weights

Before training voc07+12, you can must set ASPECT_CROPPING in detnet59.yml False, or you will encounter some error during the training.

train voc07+12:

CUDA_VISIBLE_DEVICES=3 python3 trainval_net.py exp_name2 --dataset pascal_voc_0712 --net detnet59 --bs 1 --nw 4 --lr 1e-3 --epochs 12 --save_dir weights --cuda --use_tfboard True

TODO

  • Train and test on COCO

About

An implementation of DetNet: A Backbone network for Object Detection.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 77.2%
  • C 11.8%
  • Cuda 9.7%
  • Other 1.3%