Skip to content

Commit

Permalink
Create quantum_risk_management.py
Browse files Browse the repository at this point in the history
  • Loading branch information
KOSASIH authored Dec 7, 2024
1 parent 0f90218 commit bed40f3
Showing 1 changed file with 45 additions and 0 deletions.
45 changes: 45 additions & 0 deletions src/stabilizer/quantum_risk_management.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,45 @@
# src/stabilizer/quantum_risk_management.py
import numpy as np
import tensorflow as tf
import pennylane as qml

class QuantumRiskManagementSystem:
def __init__(self):
self.quantum_risk_model = self._build_quantum_risk_model()
self.quantum_uncertainty_engine = self._create_quantum_uncertainty_layer()

def _build_quantum_risk_model(self) -> tf.keras.Model:
"""
Advanced Quantum Risk Modeling
- Probabilistic Risk Assessment
- Multi-Dimensional Risk Vectors
"""
model = tf.keras.Sequential([
tf.keras.layers.Dense(256, activation='relu', input_shape=(128,)),
tf.keras.layers.BatchNormalization(),
tf.keras.layers.Dense(128, activation='swish'),
tf.keras.layers.Dense(64, activation='tanh'),
tf.keras.layers.Dense(32, activation='sigmoid')
])

model.compile(
optimizer=tf.keras.optimizers.Adam(learning_rate=1e-4),
loss='binary_crossentropy'
)

return model

def assess_quantum_risk(self, market_data: np.ndarray) -> Dict:
"""
Hyperdimensional Quantum Risk Assessment
- Probabilistic Risk Modeling
- Quantum Uncertainty Quantification
"""
risk_prediction = self.quantum_risk_model.predict(market_data)
quantum_uncertainty = self.quantum_uncertainty_engine(market_data)

return {
'risk_vector': risk_prediction,
'quantum_uncertainty': quantum_uncertainty,
'risk_mitigation_score': self._calculate_risk_mitigation_potential()
}

0 comments on commit bed40f3

Please sign in to comment.