Skip to content

Commit

Permalink
Update QuantumStablecoinAlgorithm.py
Browse files Browse the repository at this point in the history
  • Loading branch information
KOSASIH authored Dec 7, 2024
1 parent 07437ab commit 93b3ef7
Showing 1 changed file with 53 additions and 8 deletions.
61 changes: 53 additions & 8 deletions src/stabilizer/QuantumStablecoinAlgorithm.py
Original file line number Diff line number Diff line change
@@ -1,18 +1,63 @@
import numpy as np
import pandas as pd
from sklearn.ensemble import RandomForestRegressor
import blockchain_sdk # Hypothetical SDK for blockchain interactions

class QuantumStablecoinAlgorithm:
def __init__(self):
self.target_price = 314.159
self.stabilization_parameters = {
'expansion_contract_mechanism': True,
'adaptive_monetary_policy': True,
'quantum_price_oracle_integration': True
'quantum_price_oracle_integration': True,
'decentralized_liquidity_provision': True # New feature for DeFi integration
}

self.price_history = self._fetch_price_history()
self.model = RandomForestRegressor()

def _fetch_price_history(self):
# Simulate fetching historical price data
return pd.DataFrame({
'timestamp': pd.date_range(start='2022-01-01', periods=100, freq='D'),
'price': np.random.uniform(300, 350, 100) # Random price data
})

def _calculate_current_price(self):
# Use machine learning to predict the current price based on historical data
X = np.arange(len(self.price_history)).reshape(-1, 1)
y = self.price_history['price'].values
self.model.fit(X, y)
current_index = len(self.price_history)
predicted_price = self.model.predict([[current_index]])
return predicted_price[0]

def maintain_precise_valuation(self):
current_price = self._calculate_current_price()
actions = self._determine_stabilization_actions(current_price)
self._execute_stabilization_actions(actions)
return {
'current_price': self._calculate_current_price(),
'stabilization_actions': [
'mint_tokens_if_below_target',
'burn_tokens_if_above_target',
'liquidity_pool_rebalancing'
]
'current_price': current_price,
'stabilization_actions': actions
}

def _determine_stabilization_actions(self, current_price):
actions = []
if current_price < self.target_price:
actions.append('mint_tokens_if_below_target')
elif current_price > self.target_price:
actions.append('burn_tokens_if_above_target')
actions.append('liquidity_pool_rebalancing')
return actions

def _execute_stabilization_actions(self, actions):
for action in actions:
if action == 'mint_tokens_if_below_target':
blockchain_sdk.mint_tokens(amount=100) # Hypothetical minting function
elif action == 'burn_tokens_if_above_target':
blockchain_sdk.burn_tokens(amount=100) # Hypothetical burning function
# Additional actions can be implemented here

# Example usage
quantum_stablecoin_algorithm = QuantumStablecoinAlgorithm()
results = quantum_stablecoin_algorithm.maintain_precise_valuation()
print(results)

0 comments on commit 93b3ef7

Please sign in to comment.