Skip to content

Commit

Permalink
Update GlobalRegulatoryComplianceEngine.py
Browse files Browse the repository at this point in the history
  • Loading branch information
KOSASIH authored Dec 7, 2024
1 parent 4ac24ac commit 71f0dd8
Showing 1 changed file with 136 additions and 139 deletions.
275 changes: 136 additions & 139 deletions src/stabilizer/GlobalRegulatoryComplianceEngine.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,165 +4,162 @@
import uuid
import logging
import asyncio
import json
from typing import Dict, List, Any, Optional
from dataclasses import dataclass, field
from datetime import datetime, timedelta

# Advanced Imports
import pandas as pd
# Advanced Blockchain and Cryptographic Libraries
from web3 import Web3
from eth_account import Account
from cryptography.hazmat.primitives import serialization

# Machine Learning and Data Processing
import numpy as np
import pandas as pd
import tensorflow as tf
import sqlalchemy as sa
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm import sessionmaker, Session
from sqlalchemy.dialects.postgresql import JSONB

# Machine Learning
from sklearn.ensemble import RandomForestClassifier
from sklearn.preprocessing import StandardScaler
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Dropout

# Blockchain and Cryptography
from web3 import Web3
import jwt
from cryptography.fernet import Fernet

# Compliance Frameworks
# Compliance and Regulatory Frameworks
import pandera as pa
from pydantic import BaseModel, validator, Field

# Logging Configuration
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler('regulatory_compliance_engine.log'),
logging.StreamHandler()
]
)
logger = logging.getLogger(__name__)
from pydantic import BaseModel, Field, validator

# Database Configuration
Base = declarative_base()
DATABASE_URL = os.getenv('COMPLIANCE_DATABASE_URL', 'postgresql://user:password@localhost/compliance_engine')
engine = sa.create_engine(DATABASE_URL, pool_pre_ping=True)
SessionLocal = sessionmaker(autocommit=False, autoflush=False, bind=engine)
# Distributed Systems Components
from multiprocessing import Process, Queue
from concurrent.futures import ThreadPoolExecutor

@dataclass
class ComplianceReport:
report_id: str = field(default_factory=lambda: str(uuid.uuid4()))
timestamp: datetime = field(default_factory=datetime.utcnow)
compliance_score: float = 0.0
risk_level: str = 'UNASSESSED'
regulatory_coverage: List[str] = field(default_factory=list)
detailed_assessment: Dict[str, Any] = field(default_factory=dict)

class ComplianceLogModel(Base):
__tablename__ = 'compliance_logs'

id = sa.Column(sa.Integer, primary_key=True, index=True)
report_id = sa.Column(sa.String, unique=True, index=True)
timestamp = sa.Column(sa.DateTime, default=datetime.utcnow)
compliance_data = sa.Column(JSONB)
risk_level = sa.Column(sa.String)

class TransactionDataModel(BaseModel):
"""Pydantic model for transaction data validation"""
transaction_id: str = Field(..., description="Unique transaction identifier")
amount: float = Field(..., gt=0, description="Transaction amount")
currency: str = Field(..., description="Transaction currency")
timestamp: datetime = Field(default_factory=datetime.utcnow)

@validator('currency')
def validate_currency(cls, v):
valid_currencies = ['USD', 'EUR', 'GBP', 'JPY']
if v not in valid_currencies:
raise ValueError(f"Invalid currency. Must be one of {valid_currencies}")
return v

class RegulatoryComplianceSchema(BaseModel):
"""Pydantic model for compliance configuration"""
organization_id: str = Field(..., description="Unique organization identifier")
compliance_level: int = Field(
default=3,
ge=1,
le=5,
description="Compliance level between 1-5"
)

class GlobalRegulatoryComplianceEngine:
class PistellarRegulatoryComplianceEngine:
def __init__(
self,
organization_id: Optional[str] = None,
compliance_level: int = 3
organization_id: str,
blockchain_provider: str = "https://mainnet.infura.io/v3/PROJECT_ID"
):
# Validate input configuration
validated_config = RegulatoryComplianceSchema(
organization_id=organization_id or str(uuid.uuid4()),
compliance_level=compliance_level
)

# Set core attributes
self.organization_id = validated_config.organization_id
self.compliance_level = validated_config.compliance_level
# Core Configuration
self.organization_id = organization_id
self.blockchain_provider = blockchain_provider

# Compliance Modules Configuration
self.compliance_modules = {
'international_financial_reporting': True,
'cross_border_transaction_monitoring': True,
'adaptive_regulatory_response_system': True,
'AI_compliance_assessment': True,
'real_time_regulatory_updates': True,
'blockchain_audit_trail': True
}
# Advanced Security Initialization
self._initialize_security_protocols()

# Initialize Security and ML Components
self._initialize_security_components()
self._initialize_ml_models()
# Machine Learning Models
self._initialize_ml_compliance_models()

# Logging
self.logger = logger
# Distributed Processing Setup
self.processing_queue = Queue()
self.thread_executor = ThreadPoolExecutor(max_workers=4)

def _initialize_security_components(self):
"""Initialize Cryptographic and Security Components"""
def _initialize_security_protocols(self):
"""
Advanced Multi-Layer Security Initialization
- Blockchain Account Generation
- Cryptographic Key Management
- Secure Communication Channels
"""
try:
# Encryption Key Generation
self.encryption_key = Fernet.generate_key()
self.cipher_suite = Fernet(self.encryption_key)
# Generate Ethereum Account
self.eth_account = Account.create()

# Blockchain Configuration
self.w3 = Web3(Web3.HTTPProvider(
os.getenv('ETHEREUM_NODE_URL', 'https://mainnet.infura.io/v3/YOUR-PROJECT-ID')
))
except Exception as e:
self.logger.error(f"Security Initialization Failed: {e}")
# Blockchain Web3 Connection
self.w3 = Web3(Web3.HTTPProvider(self.blockchain_provider))

# Advanced Cryptographic Key Generation
self.private_key = self.eth_account.privateKey
self.public_key = self.eth_account.address

except Exception as security_error:
logging.error(f"Security Protocol Initialization Failed: {security_error}")
raise

def _initialize_ml_models(self):
"""Advanced Machine Learning Model Initialization"""
def _initialize_ml_compliance_models(self):
"""
Advanced Machine Learning Compliance Models
- Risk Assessment Neural Network
- Regulatory Compliance Classifier
"""
# Random Forest Compliance Classifier
self.compliance_classifier = RandomForestClassifier(
n_estimators=100,
max_depth=10,
random_state=42
)

# TensorFlow Risk Assessment Model
self.risk_assessment_model = tf.keras.Sequential([
tf.keras.layers.Dense(64, activation='relu', input_shape=(10,)),
tf.keras.layers.Dropout(0.3),
tf.keras.layers.Dense(32, activation='relu'),
tf.keras.layers.Dense(1, activation='sigmoid')
])

self.risk_assessment_model.compile(
optimizer='adam',
loss='binary_crossentropy',
metrics=['accuracy']
)

async def perform_comprehensive_compliance_assessment(
self,
transaction_data: Dict[str, Any]
) -> Dict[str, Any]:
"""
Comprehensive Regulatory Compliance Assessment
Args:
transaction_data (Dict): Transaction details for compliance check
Returns:
Dict: Comprehensive compliance assessment results
"""
try:
# Scikit-learn Risk Classifier
self.risk_classifier = RandomForestClassifier(
n_estimators=100,
random_state=42,
max_depth=10
)
self.scaler = StandardScaler()
# Distributed Processing of Compliance Check
compliance_result = await self._distributed_compliance_processing(transaction_data)

# TensorFlow Neural Network for Complex Risk Assessment
self.neural_risk_model = Sequential([
Dense(64, activation='relu', input_shape=(10,)),
Dropout(0.3),
Dense(32, activation='relu'),
Dense(1, activation='sigmoid')
])
self.neural_risk_model.compile(
optimizer='adam',
loss='binary_crossentropy',
metrics=['accuracy']
)
except Exception as e:
self.logger.error(f"ML Model Initialization Failed: {e}")
return {
"compliance_score": compliance_result.get("score", 0),
"risk_level": compliance_result.get("risk_level", "UNDEFINED"),
"regulatory_flags": compliance_result.get("flags", [])
}

except Exception as assessment_error:
logging.error(f"Compliance Assessment Error: {assessment_error}")
raise

def _distributed_compliance_processing(self, transaction_data):
"""
Distributed Multi-Process Compliance Processing
"""
def process_compliance_module(data, result_queue):
# Simulate complex compliance processing
compliance_score = np.random.uniform(0, 1)
result_queue.put({
"score": compliance_score,
"risk_level": "LOW" if compliance_score > 0.7 else "HIGH",
"flags": []
})

result_queue = Queue()
compliance_process = Process(
target=process_compliance_module,
args=(transaction_data, result_queue)
)
compliance_process.start()
compliance_process.join()

return result_queue.get()

# Example Usage
async def main():
compliance_engine = PistellarRegulatoryComplianceEngine(
organization_id="example_org_123"
)

transaction_data = {
"amount": 10000,
"currency": "USD",
"timestamp": datetime.now()
}

result = await compliance_engine.perform_comprehensive_compliance_assessment(
transaction_data
)
print(result)

if __name__ == "__main__":
asyncio.run(main())

0 comments on commit 71f0dd8

Please sign in to comment.