-
-
Notifications
You must be signed in to change notification settings - Fork 41
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
108 additions
and
0 deletions.
There are no files selected for viewing
108 changes: 108 additions & 0 deletions
108
...tion/pi_network/pi-stablecoin/pi-coin-stabilization/ai_models/pi_stablecoin_stabilizer.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,108 @@ | ||
import pandas as pd | ||
import numpy as np | ||
from sklearn.ensemble import RandomForestRegressor | ||
from sklearn.model_selection import train_test_split | ||
from sklearn.metrics import mean_squared_error, r2_score | ||
from sklearn.preprocessing import StandardScaler | ||
from sklearn.pipeline import Pipeline | ||
from xgboost import XGBRegressor | ||
from catboost import CatBoostRegressor | ||
from lightgbm import LGBMRegressor | ||
from tensorflow.keras.models import Sequential | ||
from tensorflow.keras.layers import LSTM, Dense | ||
|
||
class PiStablecoinStabilizer: | ||
def __init__(self, data, target_variable, test_size=0.2, random_state=42): | ||
self.data = data | ||
self.target_variable = target_variable | ||
self.test_size = test_size | ||
self.random_state = random_state | ||
self.X_train = None | ||
self.X_test = None | ||
self.y_train = None | ||
self.y_test = None | ||
self.models = [] | ||
|
||
def preprocess_data(self): | ||
# Drop missing values | ||
self.data.dropna(inplace=True) | ||
|
||
# Scale features using StandardScaler | ||
scaler = StandardScaler() | ||
self.data[['feature1', 'feature2', ...]] = scaler.fit_transform(self.data[['feature1', 'feature2', ...]]) | ||
|
||
# Select top k features using SelectKBest | ||
selector = SelectKBest(f_classif, k=10) | ||
self.data = selector.fit_transform(self.data.drop([self.target_variable], axis=1), self.data[self.target_variable]) | ||
|
||
# Split data into training and testing sets | ||
self.X_train, self.X_test, self.y_train, self.y_test = train_test_split(self.data.drop([self.target_variable], axis=1), | ||
self.data[self.target_variable], | ||
test_size=self.test_size, | ||
random_state=self.random_state) | ||
|
||
def train_models(self): | ||
# Create and train multiple models | ||
models = [ | ||
RandomForestRegressor(n_estimators=100, max_depth=5), | ||
XGBRegressor(objective='reg:squarederror', max_depth=5, n_estimators=100), | ||
CatBoostRegressor(iterations=100, depth=5, learning_rate=0.1), | ||
LGBMRegressor(objective='regression', max_depth=5, n_estimators=100), | ||
self._train_lstm_model(), | ||
self._train_arima_model(), | ||
self._train_sarimax_model(), | ||
self._train_kalman_filter_model() | ||
] | ||
|
||
for model in models: | ||
model.fit(self.X_train, self.y_train) | ||
self.models.append(model) | ||
|
||
def _train_lstm_model(self): | ||
# Train an LSTM model | ||
model = Sequential() | ||
model.add(LSTM(units=50, return_sequences=True, input_shape=(self.X_train.shape[1], 1))) | ||
model.add(LSTM(units=50)) | ||
model.add(Dense(1)) | ||
model.compile(loss='mean_squared_error', optimizer='adam') | ||
return model | ||
|
||
def _train_arima_model(self): | ||
# Train an ARIMA model | ||
model = ARIMA(self.y_train, order=(1,1,1)) | ||
model_fit = model.fit(disp=0) | ||
return model_fit | ||
|
||
def _train_sarimax_model(self): | ||
# Train a SARIMAX model | ||
model = SARIMAX(self.y_train, order=(1,1,1), seasonal_order=(1,1,1,12)) | ||
model_fit = model.fit(disp=0) | ||
return model_fit | ||
|
||
def _train_kalman_filter_model(self): | ||
# Train a Kalman filter model | ||
kf = KalmanFilter(transition_matrices=[1], | ||
observation_matrices=[1], | ||
initial_state_mean=0, | ||
initial_state_covariance=1, | ||
observation_covariance=1, | ||
transition_covariance=0.1) | ||
kf = kf.em(self.y_train, n_iter=50) | ||
return kf | ||
|
||
def evaluate_models(self): | ||
# Evaluate each model using mean squared error and R-squared score | ||
results = [] | ||
for model in self.models: | ||
y_pred = model.predict(self.X_test) | ||
mse = mean_squared_error(self.y_test, y_pred) | ||
r2 = r2_score(self.y_test, y_pred) | ||
results.append((model.__class__.__name__, mse, r2)) | ||
|
||
return results | ||
|
||
def make_predictions(self, input_data): | ||
# Make predictions using the best model | ||
best_model = max(self.models, key=lambda x: x.score(self.X_test, self.y_test)) | ||
predictions = best_model.predict(input_data) | ||
return predictions |