Skip to content

Commit

Permalink
Create decision_support.py
Browse files Browse the repository at this point in the history
  • Loading branch information
KOSASIH authored Aug 28, 2024
1 parent 92d0691 commit c19b250
Showing 1 changed file with 99 additions and 0 deletions.
99 changes: 99 additions & 0 deletions ai-powered-risk-management-system/decision_support.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,99 @@
import matplotlib.pyplot as plt

def risk_mitigation_strategies(fraud_score, liquidity_score, stability_score):
"""
Implement risk mitigation strategies based on risk scores.
Args:
fraud_score (float): Fraud detection score
liquidity_score (float): Liquidity risk assessment score
stability_score (float): Network stability evaluation score
Returns:
None
"""
if fraud_score > 0.5:
print('Implement additional security measures, such as:')
print(' * Enhancing user authentication and authorization')
print(' * Implementing more robust fraud detection algorithms')
print(' * Increasing transaction monitoring and reporting')
elif liquidity_score < 0.5:
print('Increase liquidity provisions, such as:')
print(' * Increasing the reserve ratio')
print(' * Implementing more efficient liquidity management algorithms')
print(' * Enhancing market making and liquidity provision incentives')
elif stability_score < 0.5:
print('Optimize network performance, such as:')
print(' * Upgrading node hardware and infrastructure')
print(' * Implementing more efficient consensus algorithms')
print(' * Enhancing network monitoring and maintenance')

def alert_notifications(fraud_score, liquidity_score, stability_score):
"""
Implement alert notifications based on risk scores.
Args:
fraud_score (float): Fraud detection score
liquidity_score (float): Liquidity risk assessment score
stability_score (float): Network stability evaluation score
Returns:
None
"""
if fraud_score > 0.8:
print('**Fraud Alert!**')
print(' * Immediate action required to prevent potential fraud')
elif liquidity_score < 0.2:
print('**Liquidity Alert!**')
print(' * Immediate action required to maintain liquidity')
elif stability_score < 0.2:
print('**Stability Alert!**')
print(' * Immediate action required to maintain network stability')

def visualize_risk_scores(fraud_score, liquidity_score, stability_score):
"""
Visualize risk scores using a heatmap.
Args:
fraud_score (float): Fraud detection score
liquidity_score (float): Liquidity risk assessment score
stability_score (float): Network stability evaluation score
Returns:
None
"""
risk_scores = pd.DataFrame({'Fraud Score': [fraud_score], 'Liquidity Score': [liquidity_score], 'Stability Score': [stability_score]})
sns.heatmap(risk_scores, annot=True, cmap='coolwarm', square=True)
plt.show()

def visualize_market_trends(market_data):
"""
Visualize market trends using a line chart.
Args:
market_data (pd.DataFrame): Market data
Returns:
None
"""
plt.plot(market_data['date'], market_data['price'])
plt.xlabel('Date')
plt.ylabel('Price')
plt.title('Market Trends')
plt.show()

def visualize_user_behavior(user_behavior_data):
"""
Visualize user behavior using a bar chart.
Args:
user_behavior_data (pd.DataFrame): User behavior data
Returns:
None
"""
plt.bar(user_behavior_data['user_id'], user_behavior_data['transaction_count'])
plt.xlabel('User ID')
plt.ylabel('Transaction Count')
plt.title('User Behavior')
plt.show()

0 comments on commit c19b250

Please sign in to comment.