Skip to content

Commit

Permalink
Create network.py
Browse files Browse the repository at this point in the history
  • Loading branch information
KOSASIH authored Aug 6, 2024
1 parent 3513e96 commit a9a805d
Showing 1 changed file with 54 additions and 0 deletions.
54 changes: 54 additions & 0 deletions ai/optimization/network.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,54 @@
import torch
import torch.nn as nn
import torch.optim as optim

class NeuralNetworkOptimizer:
def __init__(self, model: nn.Module, criterion: nn.Module, optimizer: optim.Optimizer):
self.model = model
self.criterion = criterion
self.optimizer = optimizer

def train(self, inputs: torch.Tensor, targets: torch.Tensor):
self.optimizer.zero_grad()
outputs = self.model(inputs)
loss = self.criterion(outputs, targets)
loss.backward()
self.optimizer.step()

def prune(self, amount: float):
# Prune the model by removing the smallest weights
for module in self.model.modules():
if isinstance(module, nn.Conv2d) or isinstance(module, nn.Linear):
weights = module.weight.data
threshold = torch.abs(weights).mean() * amount
mask = torch.abs(weights) > threshold
module.weight.data *= mask

def quantize(self, bits: int):
# Quantize the model's weights and activations
for module in self.model.modules():
if isinstance(module, nn.Conv2d) or isinstance(module, nn.Linear):
weights = module.weight.data
min_val = weights.min()
max_val = weights.max()
scale = (max_val - min_val) / (2 ** bits - 1)
module.weight.data = torch.round((weights - min_val) / scale) * scale + min_val

def knowledge_distillation(self, teacher_model: nn.Module):
# Perform knowledge distillation from the teacher model
for module in self.model.modules():
if isinstance(module, nn.Conv2d) or isinstance(module, nn.Linear):
teacher_weights = teacher_model.state_dict()[module.weight.name]
module.weight.data = teacher_weights

class NeuralNetworkPruningScheduler:
def __init__(self, optimizer: NeuralNetworkOptimizer, prune_amount: float, prune_frequency: int):
self.optimizer = optimizer
self.prune_amount = prune_amount
self.prune_frequency = prune_frequency
self.epoch = 0

def step(self):
if self.epoch % self.prune_frequency == 0:
self.optimizer.prune(self.prune_amount)
self.epoch += 1

0 comments on commit a9a805d

Please sign in to comment.