-
-
Notifications
You must be signed in to change notification settings - Fork 41
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
41 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,41 @@ | ||
import pandas as pd | ||
from sklearn.ensemble import RandomForestClassifier | ||
from sklearn.model_selection import train_test_split | ||
from sklearn.metrics import accuracy_score | ||
|
||
class AIDrivenAnalytics: | ||
def __init__(self, transaction_data_path): | ||
self.transaction_data_path = transaction_data_path | ||
|
||
def load_transaction_data(self): | ||
transaction_data = pd.read_csv(self.transaction_data_path) | ||
return transaction_data | ||
|
||
def train_anomaly_detection_model(self, transaction_data): | ||
X = transaction_data.drop(['is_anomaly'], axis=1) | ||
y = transaction_data['is_anomaly'] | ||
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) | ||
model = RandomForestClassifier(n_estimators=100, random_state=42) | ||
model.fit(X_train, y_train) | ||
return model | ||
|
||
def detect_anomalies(self, transaction_data, model): | ||
predictions = model.predict(transaction_data) | ||
return predictions | ||
|
||
def provide_personalized_recommendations(self, user_data, transaction_data): | ||
# Implement personalized recommendation system using collaborative filtering or similar techniques | ||
pass | ||
|
||
# Example usage: | ||
transaction_data_path = 'path/to/transaction_data.csv' | ||
ai_driven_analytics = AIDrivenAnalytics(transaction_data_path) | ||
|
||
transaction_data = ai_driven_analytics.load_transaction_data() | ||
model = ai_driven_analytics.train_anomaly_detection_model(transaction_data) | ||
predictions = ai_driven_analytics.detect_anomalies(transaction_data, model) | ||
print(predictions) | ||
|
||
user_data = pd.DataFrame({'user_id': [1, 2, 3], 'transaction_history': ['...']}) | ||
personalized_recommendations = ai_driven_analytics.provide_personalized_recommendations(user_data, transaction_data) | ||
print(personalized_recommendations) |