Skip to content

Commit

Permalink
Create ai_driven_analitycs.py
Browse files Browse the repository at this point in the history
  • Loading branch information
KOSASIH authored Sep 4, 2024
1 parent b0ce4cd commit 9fa9908
Showing 1 changed file with 41 additions and 0 deletions.
41 changes: 41 additions & 0 deletions ai_driven_analitycs/ai_driven_analitycs.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,41 @@
import pandas as pd
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score

class AIDrivenAnalytics:
def __init__(self, transaction_data_path):
self.transaction_data_path = transaction_data_path

def load_transaction_data(self):
transaction_data = pd.read_csv(self.transaction_data_path)
return transaction_data

def train_anomaly_detection_model(self, transaction_data):
X = transaction_data.drop(['is_anomaly'], axis=1)
y = transaction_data['is_anomaly']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
model = RandomForestClassifier(n_estimators=100, random_state=42)
model.fit(X_train, y_train)
return model

def detect_anomalies(self, transaction_data, model):
predictions = model.predict(transaction_data)
return predictions

def provide_personalized_recommendations(self, user_data, transaction_data):
# Implement personalized recommendation system using collaborative filtering or similar techniques
pass

# Example usage:
transaction_data_path = 'path/to/transaction_data.csv'
ai_driven_analytics = AIDrivenAnalytics(transaction_data_path)

transaction_data = ai_driven_analytics.load_transaction_data()
model = ai_driven_analytics.train_anomaly_detection_model(transaction_data)
predictions = ai_driven_analytics.detect_anomalies(transaction_data, model)
print(predictions)

user_data = pd.DataFrame({'user_id': [1, 2, 3], 'transaction_history': ['...']})
personalized_recommendations = ai_driven_analytics.provide_personalized_recommendations(user_data, transaction_data)
print(personalized_recommendations)

0 comments on commit 9fa9908

Please sign in to comment.