Skip to content

Commit

Permalink
Create data_processing.py
Browse files Browse the repository at this point in the history
  • Loading branch information
KOSASIH authored Aug 28, 2024
1 parent 3130fde commit 99a228f
Showing 1 changed file with 30 additions and 0 deletions.
30 changes: 30 additions & 0 deletions ai-powered-risk-management-system/data_processing.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,30 @@
import tensorflow as tf
from sklearn.ensemble import IsolationForest

def anomaly_detection(data):
# Implement anomaly detection using Isolation Forest
isolation_forest = IsolationForest(contamination=0.01)
isolation_forest.fit(data)
anomalies = isolation_forest.predict(data)
return anomalies

def predictive_modeling(data):
# Implement predictive modeling using TensorFlow
model = tf.keras.models.Sequential([
tf.keras.layers.LSTM(units=50, return_sequences=True, input_shape=(data.shape[1], 1)),
tf.keras.layers.Dense(units=1)
])
model.compile(loss='mean_squared_error', optimizer='adam')
model.fit(data, epochs=100)
predictions = model.predict(data)
return predictions

def clustering_and_classification(data):
# Implement clustering and classification using scikit-learn
from sklearn.cluster import KMeans
from sklearn.metrics import accuracy_score
kmeans = KMeans(n_clusters=5)
kmeans.fit(data)
labels = kmeans.labels_
accuracy = accuracy_score(data, labels)
return labels, accuracy

0 comments on commit 99a228f

Please sign in to comment.