Skip to content

Commit

Permalink
Create real_time_threat_intelligence.py
Browse files Browse the repository at this point in the history
  • Loading branch information
KOSASIH authored Sep 15, 2024
1 parent 202673f commit 82e30e5
Showing 1 changed file with 75 additions and 0 deletions.
Original file line number Diff line number Diff line change
@@ -0,0 +1,75 @@
import os
import sys
import time
import logging
import requests
from flask import Flask, request, jsonify
from flask_socketio import SocketIO, emit
from sklearn.ensemble import RandomForestClassifier
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics import accuracy_score
from sklearn.model_selection import train_test_split

app = Flask(__name__)
app.config['SECRET_KEY'] = 'secret!'
socketio = SocketIO(app, cors_allowed_origins='*')

class RealTimeThreatIntelligence:
def __init__(self):
self.logger = logging.getLogger('RealTimeThreatIntelligence')
self.classifier = RandomForestClassifier(n_estimators=100)
self.vectorizer = TfidfVectorizer()
self.threat_database = {}

def train_model(self):
# Train the threat intelligence model using historical threat data
threat_data = self.load_threat_data()
X_train, X_test, y_train, y_test = train_test_split(threat_data['features'], threat_data['labels'], test_size=0.2, random_state=42)
X_train_vectors = self.vectorizer.fit_transform(X_train)
self.classifier.fit(X_train_vectors, y_train)
y_pred = self.classifier.predict(self.vectorizer.transform(X_test))
accuracy = accuracy_score(y_test, y_pred)
self.logger.info(f'Threat intelligence model trained with accuracy: {accuracy:.3f}')

def load_threat_data(self):
# Load historical threat data from database or API
# This implementation is highly simplified and may not be suitable for production use
threat_data = {
'features': ['malicious IP address', 'suspicious DNS query', 'unusual network traffic'],
'labels': [1, 1, 0]
}
return threat_data

def analyze_network_traffic(self, traffic_data):
# Analyze network traffic in real-time using the trained threat intelligence model
traffic_vectors = self.vectorizer.transform([traffic_data])
prediction = self.classifier.predict(traffic_vectors)
if prediction[0] == 1:
self.logger.warning(f'Potential threat detected: {traffic_data}')
return True
else:
return False

def respond_to_threat(self, threat_data):
# Respond to detected threats in real-time using automated incident response
# This implementation is highly simplified and may not be suitable for production use
self.logger.info(f'Responding to threat: {threat_data}')
# Implement automated incident response actions here

@socketio.on('connect')
def connect():
self.logger.info('Client connected')

@socketio.on('disconnect')
def disconnect():
self.logger.info('Client disconnected')

@socketio.on('network_traffic')
def handle_network_traffic(traffic_data):
rtti = RealTimeThreatIntelligence()
if rtti.analyze_network_traffic(traffic_data):
rtti.respond_to_threat(traffic_data)
emit('threat_response', {'message': 'Threat response sent'})

if __name__ == '__main__':
socketio.run(app, host='0.0.0.0', port=5000)

0 comments on commit 82e30e5

Please sign in to comment.