-
-
Notifications
You must be signed in to change notification settings - Fork 41
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Create real_time_threat_intelligence.py
- Loading branch information
Showing
1 changed file
with
75 additions
and
0 deletions.
There are no files selected for viewing
75 changes: 75 additions & 0 deletions
75
advanced_feature/real_time_threat_intelligence/real_time_threat_intelligence.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,75 @@ | ||
import os | ||
import sys | ||
import time | ||
import logging | ||
import requests | ||
from flask import Flask, request, jsonify | ||
from flask_socketio import SocketIO, emit | ||
from sklearn.ensemble import RandomForestClassifier | ||
from sklearn.feature_extraction.text import TfidfVectorizer | ||
from sklearn.metrics import accuracy_score | ||
from sklearn.model_selection import train_test_split | ||
|
||
app = Flask(__name__) | ||
app.config['SECRET_KEY'] = 'secret!' | ||
socketio = SocketIO(app, cors_allowed_origins='*') | ||
|
||
class RealTimeThreatIntelligence: | ||
def __init__(self): | ||
self.logger = logging.getLogger('RealTimeThreatIntelligence') | ||
self.classifier = RandomForestClassifier(n_estimators=100) | ||
self.vectorizer = TfidfVectorizer() | ||
self.threat_database = {} | ||
|
||
def train_model(self): | ||
# Train the threat intelligence model using historical threat data | ||
threat_data = self.load_threat_data() | ||
X_train, X_test, y_train, y_test = train_test_split(threat_data['features'], threat_data['labels'], test_size=0.2, random_state=42) | ||
X_train_vectors = self.vectorizer.fit_transform(X_train) | ||
self.classifier.fit(X_train_vectors, y_train) | ||
y_pred = self.classifier.predict(self.vectorizer.transform(X_test)) | ||
accuracy = accuracy_score(y_test, y_pred) | ||
self.logger.info(f'Threat intelligence model trained with accuracy: {accuracy:.3f}') | ||
|
||
def load_threat_data(self): | ||
# Load historical threat data from database or API | ||
# This implementation is highly simplified and may not be suitable for production use | ||
threat_data = { | ||
'features': ['malicious IP address', 'suspicious DNS query', 'unusual network traffic'], | ||
'labels': [1, 1, 0] | ||
} | ||
return threat_data | ||
|
||
def analyze_network_traffic(self, traffic_data): | ||
# Analyze network traffic in real-time using the trained threat intelligence model | ||
traffic_vectors = self.vectorizer.transform([traffic_data]) | ||
prediction = self.classifier.predict(traffic_vectors) | ||
if prediction[0] == 1: | ||
self.logger.warning(f'Potential threat detected: {traffic_data}') | ||
return True | ||
else: | ||
return False | ||
|
||
def respond_to_threat(self, threat_data): | ||
# Respond to detected threats in real-time using automated incident response | ||
# This implementation is highly simplified and may not be suitable for production use | ||
self.logger.info(f'Responding to threat: {threat_data}') | ||
# Implement automated incident response actions here | ||
|
||
@socketio.on('connect') | ||
def connect(): | ||
self.logger.info('Client connected') | ||
|
||
@socketio.on('disconnect') | ||
def disconnect(): | ||
self.logger.info('Client disconnected') | ||
|
||
@socketio.on('network_traffic') | ||
def handle_network_traffic(traffic_data): | ||
rtti = RealTimeThreatIntelligence() | ||
if rtti.analyze_network_traffic(traffic_data): | ||
rtti.respond_to_threat(traffic_data) | ||
emit('threat_response', {'message': 'Threat response sent'}) | ||
|
||
if __name__ == '__main__': | ||
socketio.run(app, host='0.0.0.0', port=5000) |