-
-
Notifications
You must be signed in to change notification settings - Fork 41
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Create neurointerface_biometric_authentication.py
- Loading branch information
Showing
1 changed file
with
99 additions
and
0 deletions.
There are no files selected for viewing
99 changes: 99 additions & 0 deletions
99
...eature/neurointerface_biometric_authentication/neurointerface_biometric_authentication.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,99 @@ | ||
import numpy as np | ||
import pandas as pd | ||
from sklearn.preprocessing import StandardScaler | ||
from sklearn.model_selection import train_test_split | ||
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix | ||
import torch | ||
import torch.nn as nn | ||
import torch.optim as optim | ||
from torch.utils.data import Dataset, DataLoader | ||
from brainflow import BoardShim, BoardIds, BrainFlowInputParams, DataFilter | ||
from brainflow.data_filter import FilterTypes, DetrendOperations | ||
|
||
class NeuroInterfaceDataset(Dataset): | ||
def __init__(self, eeg_data, labels): | ||
self.eeg_data = eeg_data | ||
self.labels = labels | ||
|
||
def __len__(self): | ||
return len(self.eeg_data) | ||
|
||
def __getitem__(self, idx): | ||
eeg_data = self.eeg_data.iloc[idx, :] | ||
label = self.labels.iloc[idx] | ||
return { | ||
'eeg_data': torch.tensor(eeg_data.values, dtype=torch.float), | ||
'label': torch.tensor(label, dtype=torch.long) | ||
} | ||
|
||
class NeuroInterfaceModel(nn.Module): | ||
def __init__(self, input_dim, hidden_dim, output_dim): | ||
super(NeuroInterfaceModel, self).__init__() | ||
self.fc1 = nn.Linear(input_dim, hidden_dim) | ||
self.fc2 = nn.Linear(hidden_dim, hidden_dim) | ||
self.fc3 = nn.Linear(hidden_dim, output_dim) | ||
|
||
def forward(self, x): | ||
x = torch.relu(self.fc1(x)) | ||
x = torch.relu(self.fc2(x)) | ||
x = self.fc3(x) | ||
return x | ||
|
||
def generate_eeg_data(board_id, sampling_rate, duration): | ||
# Initialize BrainFlow board | ||
board = BoardShim(board_id, BrainFlowInputParams()) | ||
board.prepare_session() | ||
# Start streaming EEG data | ||
board.start_stream() | ||
# Read EEG data for specified duration | ||
eeg_data = board.get_board_data(sampling_rate * duration) | ||
# Stop streaming and release board | ||
board.stop_stream() | ||
board.release_session() | ||
return pd.DataFrame(eeg_data) | ||
|
||
def train_neurointerface_model(eeg_data, labels, epochs=100, batch_size=32): | ||
# Create dataset and data loader | ||
dataset = NeuroInterfaceDataset(eeg_data, labels) | ||
data_loader = DataLoader(dataset, batch_size=batch_size, shuffle=True) | ||
|
||
# Initialize NeuroInterface model | ||
model = NeuroInterfaceModel(input_dim=128, hidden_dim=64, output_dim=2) | ||
|
||
# Define loss function and optimizer | ||
criterion = nn.CrossEntropyLoss() | ||
optimizer = optim.Adam(model.parameters(), lr=0.001) | ||
|
||
# Train NeuroInterface model | ||
for epoch in range(epochs): | ||
for batch in data_loader: | ||
eeg_data = batch['eeg_data'].to(device) | ||
label = batch['label'].to(device) | ||
optimizer.zero_grad() | ||
output = model(eeg_data) | ||
loss = criterion(output, label) | ||
loss.backward() | ||
optimizer.step() | ||
print(f'Epoch {epoch+1}, Loss: {loss.item()}') | ||
|
||
return model | ||
|
||
def authenticate_user(eeg_data, model): | ||
# Authenticate user using NeuroInterface model | ||
eeg_data = torch.tensor(eeg_data.values, dtype=torch.float) | ||
output = model(eeg_data) | ||
_, predicted = torch.max(output, 1) | ||
return predicted.item() | ||
|
||
# Generate EEG data for user authentication | ||
eeg_data = generate_eeg_data(BoardIds.SYNTHETIC_BOARD, 128, 10) | ||
|
||
# Generate labels for user authentication | ||
labels = pd.DataFrame([{'label': 1}]) | ||
|
||
# Train NeuroInterface model | ||
model = train_neurointerface_model(eeg_data, labels) | ||
|
||
# Authenticate user | ||
authentication_result = authenticate_user(eeg_data, model) | ||
print(f'Authentication result: {authentication_result}') |