-
-
Notifications
You must be signed in to change notification settings - Fork 41
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
86 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,86 @@ | ||
# MarketPredictionModel.py | ||
import pandas as pd | ||
import numpy as np | ||
from sklearn.model_selection import train_test_split, GridSearchCV | ||
from sklearn.preprocessing import StandardScaler | ||
from xgboost import XGBRegressor | ||
from sklearn.metrics import mean_squared_error, r2_score | ||
import joblib | ||
import logging | ||
|
||
# Set up logging | ||
logging.basicConfig(level=logging.INFO) | ||
|
||
class MarketPredictionModel: | ||
def __init__(self, data_file): | ||
self.data_file = data_file | ||
self.model = XGBRegressor() | ||
self.scaler = StandardScaler() | ||
|
||
def load_data(self): | ||
# Load historical market data | ||
self.data = pd.read_csv(self.data_file) | ||
logging.info("Data loaded successfully.") | ||
|
||
def preprocess_data(self): | ||
# Preprocessing: Normalize features and create target variable | ||
self.data['Date'] = pd.to_datetime(self.data['Date']) | ||
self.data.set_index('Date', inplace=True) | ||
self.data['Target'] = self.data['Price'].shift(-1) # Predict next day's price | ||
self.data.dropna(inplace=True) | ||
|
||
# Normalize features | ||
features = ['Open', 'High', 'Low', 'Volume'] | ||
self.X = self.scaler.fit_transform(self.data[features]) | ||
self.y = self.data['Target'].values | ||
|
||
def train_model(self): | ||
# Split data into training and testing sets | ||
X_train, X_test, y_train, y_test = train_test_split(self.X, self.y, test_size=0.2, random_state=42) | ||
|
||
# Hyperparameter tuning using GridSearchCV | ||
param_grid = { | ||
'n_estimators': [100, 200], | ||
'max_depth': [3, 5, 7], | ||
'learning_rate': [0.01, 0.1, 0.2] | ||
} | ||
grid_search = GridSearchCV(self.model, param_grid, scoring='neg_mean_squared_error', cv=3) | ||
grid_search.fit(X_train, y_train) | ||
|
||
self.model = grid_search.best_estimator_ | ||
logging.info(f"Best parameters: {grid_search.best_params_}") | ||
|
||
# Evaluate the model | ||
predictions = self.model.predict(X_test) | ||
mse = mean_squared_error(y_test, predictions) | ||
r2 = r2_score(y_test, predictions) | ||
logging.info(f"Model trained. MSE: {mse}, R^2: {r2}") | ||
|
||
def save_model(self, model_file): | ||
joblib.dump(self.model, model_file) | ||
joblib.dump(self.scaler, 'scaler.pkl') # Save the scaler as well | ||
logging.info(f"Model and scaler saved to {model_file} and scaler.pkl") | ||
|
||
def load_model(self, model_file): | ||
self.model = joblib.load(model_file) | ||
self.scaler = joblib.load('scaler.pkl') # Load the scaler | ||
logging.info(f"Model and scaler loaded from {model_file} and scaler.pkl") | ||
|
||
def predict(self, input_data): | ||
# Predict market price based on input data | ||
input_data_scaled = self.scaler.transform(np.array(input_data).reshape(1, -1)) | ||
prediction = self.model.predict(input_data_scaled) | ||
return prediction[0] | ||
|
||
# Example usage | ||
if __name__ == "__main__": | ||
model = MarketPredictionModel("historical_market_data.csv") | ||
model.load_data() | ||
model.preprocess_data() | ||
model.train_model() | ||
model.save_model("market_prediction_model.pkl") | ||
|
||
# Example prediction | ||
input_data = [100, 105, 95, 1000] # Open, High, Low, Volume | ||
predicted_price = model.predict(input_data) | ||
logging.info(f"Predicted next day's price: {predicted_price}") |