Skip to content

Commit

Permalink
Create ai_risk_assessment
Browse files Browse the repository at this point in the history
  • Loading branch information
KOSASIH authored Nov 23, 2024
1 parent b2f98a1 commit 38fbdb1
Showing 1 changed file with 35 additions and 0 deletions.
35 changes: 35 additions & 0 deletions blockchain_integration/pi_network/ai_risk_assessment
Original file line number Diff line number Diff line change
@@ -0,0 +1,35 @@
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score
import joblib

class RiskAssessmentModel:
def __init__(self):
self.model = RandomForestClassifier(n_estimators=100, random_state=42)

def train(self, data_path):
# Load dataset
data = pd.read_csv(data_path)
X = data.drop('risk_label', axis=1)
y = data['risk_label']

# Split the dataset
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# Train the model
self.model.fit(X_train, y_train)

# Evaluate the model
predictions = self.model.predict(X_test)
accuracy = accuracy_score(y_test, predictions)
print(f'Model accuracy: {accuracy:.2f}')

def save_model(self, model_path):
joblib.dump(self.model, model_path)

def load_model(self, model_path):
self.model = joblib.load(model_path)

def predict(self, input_data):
return self.model.predict([input_data])

0 comments on commit 38fbdb1

Please sign in to comment.