-
-
Notifications
You must be signed in to change notification settings - Fork 42
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
32 additions
and
0 deletions.
There are no files selected for viewing
32 changes: 32 additions & 0 deletions
32
features/neuromorphic_fraud_detection/neuromorphic_network.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,32 @@ | ||
# neuromorphic_network.py | ||
import nengo | ||
from nengo.dists import Uniform | ||
|
||
def neuromorphic_fraud_detection(input_data): | ||
# Define the neuromorphic network | ||
model = nengo.Network() | ||
with model: | ||
input_node = nengo.Node(input_data) | ||
fraud_detector = nengo.Ensemble(n_neurons=100, dimensions=10, neuron_type=nengo.LIF()) | ||
nengo.Connection(input_node, fraud_detector) | ||
output_node = nengo.Node(size_in=1) | ||
nengo.Connection(fraud_detector, output_node, function=lambda x: 1 if x > 0.5 else 0) | ||
|
||
# Run the neuromorphic network | ||
with nengo.Simulator(model) as sim: | ||
sim.run(1.0) | ||
|
||
return sim.data[output_node] | ||
|
||
# fraud_detector.py | ||
import numpy as np | ||
from sklearn.ensemble import RandomForestClassifier | ||
|
||
def fraud_detector(input_data): | ||
# Train a random forest classifier | ||
clf = RandomForestClassifier(n_estimators=100) | ||
clf.fit(input_data, np.zeros((input_data.shape[0],))) | ||
|
||
# Use the trained classifier to detect fraud | ||
predictions = clf.predict(input_data) | ||
return predictions |