Skip to content

Commit

Permalink
Create shors_algorithm.py
Browse files Browse the repository at this point in the history
  • Loading branch information
KOSASIH authored Dec 3, 2024
1 parent c1fc59d commit 1ed6b6b
Showing 1 changed file with 52 additions and 0 deletions.
52 changes: 52 additions & 0 deletions quantum_integration/quantum_algorithms/shors_algorithm.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,52 @@
from qiskit import QuantumCircuit, Aer, transpile, assemble, execute
import numpy as np
from qiskit.visualization import plot_histogram

def shors_algorithm(N):
# Step 1: Choose a random a
a = np.random.randint(2, N)

# Step 2: Create the quantum circuit
n_count = 2 * N.bit_length() # Number of counting qubits
qc = QuantumCircuit(n_count, n_count)

# Step 3: Apply the quantum Fourier transform
for i in range(n_count):
qc.h(i) # Initialize counting qubits

# Step 4: Apply controlled-U operations
for i in range(n_count):
qc.append(controlled_U(a, N, 2**i), [i] + list(range(n_count)))

# Step 5: Apply the inverse QFT
qc = inverse_qft(qc, n_count)

# Step 6: Measure the result
qc.measure(range(n_count), range(n_count))

# Execute the circuit
backend = Aer.get_backend('qasm_simulator')
result = execute(qc, backend, shots=1024).result()
counts = result.get_counts()

# Plot the results
plot_histogram(counts).show()

return counts

def controlled_U(a, N, power):
# Create a controlled-U operation
qc = QuantumCircuit(N.bit_length())
# Implement the modular exponentiation U|x> = |(a^x mod N)>
# (This is a placeholder; actual implementation will depend on N and a)
return qc

def inverse_qft(qc, n):
# Implement the inverse Quantum Fourier Transform
for i in range(n):
qc.h(i)
for j in range(i):
qc.cp(-np.pi / (2 ** (i - j)), j, i)
for i in range(n // 2):
qc.swap(i, n - i - 1)
return qc

0 comments on commit 1ed6b6b

Please sign in to comment.