Primary author: Miles Lucas [email protected]
Quadrant polarization statistics based on Schmid et al., 2021.
julia> Q, U = # load your Stokes data as arrays
position angle is defined as the near-side minor axis in degrees clockwise from North
julia> pa = -118 # degrees
-118
julia> using QuadPol # needed for quadpol function
julia> stats = quadpol(Q, U; pa=pa);
Relative quadrant polarization statistics
Q000/Qphi = -0.006138270764788408 U045/Qphi = -0.03825566505358086
Q090/Qphi = 0.47013684691873975 U135/Qphi = 0.24783192367196974
Q180/Qphi = -0.020413603056487466 U225/Qphi = -0.14450180863634055
Q270/Qphi = 0.3894757166335373 U315/Qphi = -0.08027138677188023
Quadrant sum statistics
ΣQxxx/Qphi = 0.8330606897310011 ΣUxxx/Qphi = -0.015196936789831882
Σ|Qxxx|/Qphi = 0.886164437373553 Σ|Uxxx|/Qphi = 0.5108607841337713
Left-right asymmetry deviations
Δ090/270 = 9.38342850084427% Δ045/315 = -35.448212936377%
Δ135/225 = 26.337300753540255%
Back-front parameter ratios
Λ000/180 = 0.3006951172609217 Λ045/135 = 0.1543613287859398
Λ315/225 = 0.5555043741625038
Special back-front parameter ratios
Λa = (|Q090|+|Q270|)/(2|Q180|) = 21.054895629487888
Λb = (|Q090|+|Q270|)/(|U135|+|U225|) = 2.1910238472096557
the stats are just a NamedTuple
and can be exported to a table easily
julia> using DataFrames
julia> table = DataFrame([stats])
1×22 DataFrame
Row │ Q000 Q090 Q180 Q270 U045 U135 U225 U315 Qd Ud Qd_abs Ud_abs Qphi Uphi delta_090_270 delta_045_ ⋯
│ Float64 Float64 Float64 Float64 Float64 Float64 Float64 Float64 Float64 Float64 Float64 Float64 Float64 Float64 Float64 Float64 ⋯
─────┼────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
1 │ -212.889 16305.4 -707.99 13507.9 -1326.79 8595.37 -5011.65 -2783.99 28892.4 -527.064 30734.2 17717.8 34682.3 -1405.09 0.0938343 -0.354 ⋯
7 columns omitted
julia> Qerr, Uerr = # optionally load Qerr and Uerr arrays
julia> stats = quadpol(Q, Qerr, U, Uerr; pa=pa);
Relative quadrant polarization statistics
Q000/Qphi = -0.0061 ± 0.004 U045/Qphi = -0.0383 ± 0.0034
Q090/Qphi = 0.4701 ± 0.0047 U135/Qphi = 0.2478 ± 0.0045
Q180/Qphi = -0.0204 ± 0.0046 U225/Qphi = -0.1445 ± 0.0039
Q270/Qphi = 0.3895 ± 0.004 U315/Qphi = -0.0803 ± 0.0036
Quadrant sum statistics
ΣQxxx/Qphi = 0.8331 ± 0.0096 ΣUxxx/Qphi = -0.0152 ± 0.0074
Σ|Qxxx|/Qphi = 0.8862 ± 0.0099 Σ|Uxxx|/Qphi = 0.5109 ± 0.0083
Left-right asymmetry deviations
Δ090/270 = 9.38 ± 0.48% Δ045/315 = -35.4 ± 4.4%
Δ135/225 = 26.3 ± 1.4%
Back-front parameter ratios
Λ000/180 = 0.3 ± 0.21 Λ045/135 = 0.154 ± 0.014
Λ315/225 = 0.556 ± 0.028
Special back-front parameter ratios
Λa = (|Q090|+|Q270|)/(2|Q180|) = 21.1 ± 4.7
Λb = (|Q090|+|Q270|)/(|U135|+|U225|) = 2.191 ± 0.033
Cite Schmid+2021