Skip to content
/ PIXdb Public

Analytics features developed for Prostate Integrative Expression Database (PIXdb) to conduct transcriptomic analyses using publicly available prostate cancer-related data.

Notifications You must be signed in to change notification settings

JMarzec/PIXdb

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

PIXdb - Prostate Integrative Expression Database

Analytics features developed for Prostate Integrative Expression Database to conduct transcriptomic analyses using publicly available prostate cancer-related data. This includes data obtained from ArrayExpress, Gene Expression Omnibus (GEO), The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC).

Analyses scripts

Script Description Component
LiveGeneExpression.R Generates box-plots and bar-plots to visualise expression measurments across samples and groups for user-defined gene Per-dataset
LiveGeneExpressionOrdered.R Generates box-plots and bar-plots to visualise expression measurments across samples and groups for user-defined gene. The script also allows to define the order of groups as defined in the target files Per-platform
LiveCoExpression.R Calculates co-expression of user-defined genes across all samples or samples in user-defined group and presents correlation coefficients between samples as well as associated p-values in a form of correlation matrix heatmap Per-dataset Per-platform
LiveSurvivalGene.R Performs survival analysis for user-defined gene Per-dataset
LiveNetworkCreator.R Script for generating interaction networks Per-dataset Per-platform
LiveRankStats.R Generates bar-plot presenting the integrative analysis results, including the average fold-change (y-axis), combined p-value (bars' annotation) and final rank (bar colour) Per-dataset Per-platform

MySQL database set up

mysql -u root -p

CREATE DATABASE pixdb;

use pixdb

Create Datasets table

CREATE TABLE Datasets (ID INT(11) AUTO_INCREMENT PRIMARY KEY, Platform VARCHAR(20) NOT NULL, DatasetID VARCHAR(20) NOT NULL UNIQUE, PMID VARCHAR(20) UNIQUE  NOT NULL, Title TEXT, Authors TEXT, Journal TEXT, Abstract TEXT, PubDate DATE, Ranking INT(11), Analysis VARCHAR(1000));

CREATE TABLE Datasets_Keywords (DatasetID VARCHAR(20) NOT NULL PRIMARY KEY, KW INT(11) NOT NULL);

Create Platforms table

CREATE TABLE Platforms (Platform VARCHAR(20) NOT NULL, Name VARCHAR(200) NOT NULL, Total_probes VARCHAR(20), Reliable_probes VARCHAR(20), Reliable_probes_percentage VARCHAR(20), Genes_no INT(11), Datasets VARCHAR(1000) NOT NULL);

CREATE TABLE Platforms_Keywords (PlatformID VARCHAR(20) NOT NULL PRIMARY KEY, KW INT(11) NOT NULL);

CREATE TABLE Keywords (ID INT(10) UNSIGNED AUTO_INCREMENT PRIMARY KEY, Keyword text NOT NULL, Occurrences INT(11) NOT NULL, Global_Occurrences BIGINT(20) NOT NULL, Level INT(11) NOT NULL, Rank INT(11) NOT NULL);

Create Cross_platform table

CREATE TABLE Cross_platforms (ensembl_id VARCHAR(20) NOT NULL, hgnc_symbol VARCHAR(200), description VARCHAR(500), chromosome_name VARCHAR(50), band VARCHAR(20), strand VARCHAR(2), start_position VARCHAR(10), end_position VARCHAR(10), rank_TvsN VARCHAR(10), average_log2fc_TvsN VARCHAR(10), combined_p_TvsN VARCHAR(10), rank_HvsN VARCHAR(10), average_log2fc_HvsN VARCHAR(10), combined_p_HvsN VARCHAR(10), rank_TvsH VARCHAR(10), average_log2fc_TvsH VARCHAR(10), combined_p_TvsH VARCHAR(10), rank_TmvsT VARCHAR(10), average_log2fc_TmvsT VARCHAR(10), combined_p_TmvsT VARCHAR(10), rank_MvsT VARCHAR(10), average_log2fc_MvsT VARCHAR(10), combined_p_MvsT VARCHAR(10));

Populate MySQL database

Per-dataset

Addition of TCGA data as an example

CREATE TABLE Cross_platforms (ensembl_id VARCHAR(20) NOT NULL, hgnc_symbol VARCHAR(200), description VARCHAR(500), chromosome_name VARCHAR(50), band VARCHAR(20), strand VARCHAR(2), start_position VARCHAR(10), end_position VARCHAR(10), rank_TvsN VARCHAR(10), average_log2fc_TvsN VARCHAR(10), combined_p_TvsN VARCHAR(10), rank_HvsN VARCHAR(10), average_log2fc_HvsN VARCHAR(10), combined_p_HvsN VARCHAR(10), rank_TvsH VARCHAR(10), average_log2fc_TvsH VARCHAR(10), combined_p_TvsH VARCHAR(10), rank_TmvsT VARCHAR(10), average_log2fc_TmvsT VARCHAR(10), combined_p_TmvsT VARCHAR(10), rank_MvsT VARCHAR(10), average_log2fc_MvsT VARCHAR(10), combined_p_MvsT VARCHAR(10));

SELECT * FROM Datasets WHERE pmid=26544944;

Per-platform

RNA_seq

INSERT INTO Platforms ( Platform, Name, Total_probes, Reliable_probes, Reliable_probes_percentage, Genes_no, Datasets ) VALUES ( "RNA_seq", "Illumina HiSeq 2000 / Genome Analyzer II", "-", "-", "-", 52849, "TCGA , ICGC" );


Affy_HuEx1ST

INSERT INTO Platforms ( Platform, Name, Total_probes, Reliable_probes, Reliable_probes_percentage, Genes_no, Datasets ) VALUES ( "Affy_HuEx1ST", "Affymetrix Human Exon 1.0 ST", "1409213", "928184", "66", 34030, "GSE21034 , GSE29079 , GSE30521 , GSE41408" );

Affy_U133Plus2

INSERT INTO Platforms ( Platform, Name, Total_probes, Reliable_probes, Reliable_probes_percentage, Genes_no, Datasets ) VALUES ( "Affy_U133Plus2", "Affymetrix Human Genome U133 Plus 2.0", "54253", "37064", "68", 15917, "E-MEXP-1243 , GSE17951 , GSE3325 , GSE45016 , GSE55945" );

Affy_U133A

INSERT INTO Platforms ( Platform, Name, Total_probes, Reliable_probes, Reliable_probes_percentage, Genes_no, Datasets ) VALUES ( "Affy_U133A", "Affymetrix Human Genome U133A", "22086", "15318", "69", 8938, "E-TABM-26 , GSE32269 , GSE8218" );

Affy_U95Av2

INSERT INTO Platforms ( Platform, Name, Total_probes, Reliable_probes, Reliable_probes_percentage, Genes_no, Datasets ) VALUES ( "Affy_U95Av2", "Affymetrix Human Genome U95Av2", "12486", "8191", "66", 5781, "BI-GDAC , GSE1431 , GSE6919" );

Check the complete table

SELECT * FROM Platforms;

Update MySQL database using automated script

First, one needs to update the analyses.report file with lists datasets with corresponding analyses

vi /Library/WebServer/Documents/PIXdb/pixdb_backoffice/scripts/analyses.report

NOTE: Make sure to use python3 to run the script upload_completed_analysis.py

python --version

If the python2 is default

alias python=python3

...or simply execute the command with by calling python3

python upload_completed_analysis.py  --report analyses.report

Add datasets

First, and the data with relevant folder structure, e.g.

/var/www/html/bioinf/pixdb_backoffice/data/E-MEXP-1243_18596959

 E-MEXP-1243_18596959
 |
 |-norm_files
 | \-1243_1.processed.genename.csv
 |
 |-target_for_estimate.txt
 |-target_for_heatmap.txt
 \-target.txt

  1. Annotate genes in the expression matrices using Gene Symbol (initially Ensembl annotation was used)
cd /Users/marzec01/Desktop/svn/trunk/phds/Jack/transcriptomics/code

./FilesOverlap.pl -f1 /Library/WebServer/Documents/PIXdb_test/pixdb_backoffice/data/E-MEXP-1243_18596959/norm_files/Comb_E-MEXP-1243.txt -f2 /Users/marzec01/Desktop/genome_annotation/ensembl_Homo_sapiens.GRCh38.83.gtf.gene_info.txt -c 1 -o /Library/WebServer/Documents/PIXdb_test/pixdb_backoffice/data/E-MEXP-1243_18596959/norm_files/1243_1.processed.genename.txt
  1. Generate heatmap using GenesHeatmap.R script
cd Users/marzec01/Desktop/git/PIXdb/pixdb_backoffice/scripts

R --file=./GenesHeatmap.R --args "/Library/WebServer/Documents/PIXdb_test/pixdb_backoffice/data/E-MEXP-1243_18596959/norm_files/1243_1.processed.genename.csv" "/Library/WebServer/Documents/PIXdb_test/pixdb_backoffice/data/E-MEXP-1243_18596959/target_for_heatmap.txt" "/Library/WebServer/Documents/PIXdb_test/pixdb_backoffice/data/E-MEXP-1243_18596959"
  1. Run ESTIMATE analysis scripts bcntb.estimate.R and bcntb.plotly.estimate.R
Rscript bcntb.estimate.R --exp_file 1243_1.processed.genename.csv --target /Library/WebServer/Documents/PIXdb_test/pixdb_backoffice/data/E-MEXP-1243_18596959/target_for_estimate.txt  --target2 /Library/WebServer/Documents/PIXdb_test/pixdb_backoffice/data/E-MEXP-1243_18596959/target.txt --dir /Library/WebServer/Documents/PIXdb_test/pixdb_backoffice/data/E-MEXP-1243_18596959

Rscript bcntb.plotly.estimate.R --report /Library/WebServer/Documents/PIXdb_test/pixdb_backoffice/data/E-MEXP-1243_18596959/estimate.report --dir /Library/WebServer/Documents/PIXdb_test/pixdb_backoffice/data/E-MEXP-1243_18596959

  1. Run PCA analysis script bcntb.pca.R
Rscript bcntb.estimate.R --exp_file 1243_1.processed.genename.csv --target /Library/WebServer/Documents/PIXdb_test/pixdb_backoffice/data/E-MEXP-1243_18596959/target_for_estimate.txt  --target2 /Library/WebServer/Documents/PIXdb_test/pixdb_backoffice/data/E-MEXP-1243_18596959/target.txt --dir /Library/WebServer/Documents/PIXdb_test/pixdb_backoffice/data/E-MEXP-1243_18596959

Acknowledgements

Massive credit goes to Stefano Pirro who designed the portal framework (initially dedicated for Pancreatic Expression Database - Analytics) that was then adapted for PIXdb!


About

Analytics features developed for Prostate Integrative Expression Database (PIXdb) to conduct transcriptomic analyses using publicly available prostate cancer-related data.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published