Skip to content

Commit

Permalink
uniqueness of RN derivatives up ae eq (math-comp#914)
Browse files Browse the repository at this point in the history
  • Loading branch information
affeldt-aist authored and IshiguroYoshihiro committed Sep 7, 2023
1 parent f8adedd commit dff5954
Show file tree
Hide file tree
Showing 4 changed files with 152 additions and 4 deletions.
8 changes: 8 additions & 0 deletions CHANGELOG_UNRELEASED.md
Original file line number Diff line number Diff line change
Expand Up @@ -16,6 +16,14 @@
- in file `topology.v`,
+ new definitions `basis`, and `second_countable`.
+ new lemmas `clopen_countable` and `compact_countable_base`.
- in `classical_sets.v`:
+ lemmas `set_eq_le`, `set_neq_lt`
- in `set_interval.v`:
+ lemma `set_lte_bigcup`
- in `lebesgue_integral.v`:
+ lemmas `emeasurable_fun_lt`, `emeasurable_fun_le`, `emeasurable_fun_eq`,
`emeasurable_fun_neq`
+ lemma `integral_ae_eq`

### Changed

Expand Down
13 changes: 13 additions & 0 deletions classical/classical_sets.v
Original file line number Diff line number Diff line change
Expand Up @@ -1017,6 +1017,19 @@ Notation setvI := setICl.
#[deprecated(since="mathcomp-analysis 0.6", note="Use setICr instead.")]
Notation setIv := setICr.

Section set_order.
Import Order.TTheory.

Lemma set_eq_le d (rT : porderType d) T (f g : T -> rT) :
[set x | f x = g x] = [set x | (f x <= g x)%O] `&` [set x | (f x >= g x)%O].
Proof. by apply/seteqP; split => [x/= ->//|x /andP]; rewrite -eq_le =>/eqP. Qed.

Lemma set_neq_lt d (rT : orderType d) T (f g : T -> rT) :
[set x | f x != g x ] = [set x | (f x < g x)%O] `|` [set x | (f x > g x)%O].
Proof. by apply/seteqP; split => [x/=|x /=]; rewrite neq_lt => /orP. Qed.

End set_order.

Lemma image2E {TA TB rT : Type} (A : set TA) (B : set TB) (f : TA -> TB -> rT) :
[set f x y | x in A & y in B] = uncurry f @` (A `*` B).
Proof.
Expand Down
106 changes: 104 additions & 2 deletions theories/lebesgue_integral.v
Original file line number Diff line number Diff line change
Expand Up @@ -3,8 +3,8 @@ From HB Require Import structures.
From mathcomp Require Import all_ssreflect ssralg ssrnum ssrint interval finmap.
From mathcomp.classical Require Import boolp classical_sets functions.
From mathcomp.classical Require Import cardinality fsbigop mathcomp_extra.
Require Import signed reals ereal topology normedtype sequences esum measure.
Require Import lebesgue_measure numfun.
Require Import signed reals ereal topology normedtype sequences real_interval.
Require Import esum measure lebesgue_measure numfun.

(******************************************************************************)
(* Lebesgue Integral *)
Expand Down Expand Up @@ -1761,6 +1761,42 @@ Proof. by move=> mf; exact/(emeasurable_funM _ mf)/measurable_fun_cst. Qed.

End emeasurable_fun.

Section measurable_fun_measurable2.
Local Open Scope ereal_scope.
Context d (T : measurableType d) (R : realType).
Variables (D : set T) (mD : measurable D).
Implicit Types f g : T -> \bar R.

Lemma emeasurable_fun_lt f g : measurable_fun D f -> measurable_fun D g ->
measurable (D `&` [set x | f x < g x]).
Proof.
move=> mf mg; under eq_set do rewrite -sube_gt0.
by apply: emeasurable_fun_o_infty => //; exact: emeasurable_funB.
Qed.

Lemma emeasurable_fun_le f g : measurable_fun D f -> measurable_fun D g ->
measurable (D `&` [set x | f x <= g x]).
Proof.
move=> mf mg; under eq_set do rewrite -sube_le0.
by apply: emeasurable_fun_infty_c => //; exact: emeasurable_funB.
Qed.

Lemma emeasurable_fun_eq f g : measurable_fun D f -> measurable_fun D g ->
measurable (D `&` [set x | f x = g x]).
Proof.
move=> mf mg; rewrite set_eq_le setIIr.
by apply: measurableI; apply: emeasurable_fun_le.
Qed.

Lemma emeasurable_fun_neq f g : measurable_fun D f -> measurable_fun D g ->
measurable (D `&` [set x | f x != g x]).
Proof.
move=> mf mg; rewrite set_neq_lt setIUr.
by apply: measurableU; exact: emeasurable_fun_lt.
Qed.

End measurable_fun_measurable2.

Section ge0_integral_sum.
Local Open Scope ereal_scope.
Context d (T : measurableType d) (R : realType).
Expand Down Expand Up @@ -4033,6 +4069,72 @@ Qed.

End ae_ge0_le_integral.

Section integral_ae_eq.
Local Open Scope ereal_scope.
Context d (T : measurableType d) (R : realType) (mu : {measure set T -> \bar R}).

Let integral_measure_lt (D : set T) (mD : measurable D) (g f : T -> \bar R) :
mu.-integrable D f -> mu.-integrable D g ->
(forall E, measurable E -> \int[mu]_(x in E) f x = \int[mu]_(x in E) g x) ->
mu (D `&` [set x | g x < f x]) = 0.
Proof.
move=> mf mg fg; pose E j := D `&` [set x | f x - g x >= j.+1%:R^-1%:E].
have mE j : measurable (E j).
rewrite /E; apply: emeasurable_fun_le => //; first exact: measurable_fun_cst.
by apply/(emeasurable_funD mf.1)/emeasurable_funN; case: mg.
have muE j : mu (E j) = 0.
apply/eqP; rewrite eq_le measure_ge0// andbT.
have fg0 : \int[mu]_(x in E j) (f \- g) x = 0.
rewrite integralB//; last 2 first.
by apply: integrableS mf => //; exact: subIsetl.
by apply: integrableS mg => //; exact: subIsetl.
rewrite fg// subee// fin_num_abs (le_lt_trans (le_abse_integral _ _ _))//.
by apply: measurable_funS mg.1 => //; first exact: subIsetl.
apply: le_lt_trans mg.2; apply: subset_integral => //; last exact: subIsetl.
exact: measurable_funT_comp mg.1.
suff : mu (E j) <= j.+1%:R%:E * \int[mu]_(x in E j) (f \- g) x.
by rewrite fg0 mule0.
apply: (@le_trans _ _ (j.+1%:R%:E * \int[mu]_(x in E j) j.+1%:R^-1%:E)).
by rewrite integral_cst// muleA -EFinM divrr ?unitfE// mul1e.
rewrite lee_pmul//; first exact: integral_ge0.
apply: ge0_le_integral => //; [exact: measurable_fun_cst| | |by move=> x []].
- by move=> x [_/=]; exact: le_trans.
- apply: emeasurable_funB.
+ by apply: measurable_funS mf.1 => //; exact: subIsetl.
+ by apply: measurable_funS mg.1 => //; exact: subIsetl.
have nd_E : {homo E : n0 m / (n0 <= m)%N >-> (n0 <= m)%O}.
move=> i j ij; apply/subsetPset => x [Dx /= ifg]; split => //.
by move: ifg; apply: le_trans; rewrite lee_fin lef_pinv// ?posrE// ler_nat.
rewrite set_lte_bigcup.
have /cvg_lim h1 : mu \o E --> 0 by apply: cvg_near_cst; exact: nearW.
have := @nondecreasing_cvg_mu _ _ _ mu E mE (bigcupT_measurable E mE) nd_E.
by move/cvg_lim => h2; rewrite setI_bigcupr -h2// h1.
Qed.

Lemma integral_ae_eq (D : set T) (mD : measurable D) (g f : T -> \bar R) :
mu.-integrable D f -> mu.-integrable D g ->
(forall E, measurable E -> \int[mu]_(x in E) f x = \int[mu]_(x in E) g x) ->
ae_eq mu D f g.
Proof.
move=> mf mg fg.
have mugf : mu (D `&` [set x | g x < f x]) = 0 by exact: integral_measure_lt.
have mufg : mu (D `&` [set x | f x < g x]) = 0.
by apply: integral_measure_lt => // E mE; rewrite fg.
have h : ~` [set x | D x -> f x = g x] = D `&` [set x | f x != g x].
apply/seteqP; split => [x/= /not_implyP[? /eqP]//|x/= [Dx fgx]].
by apply/not_implyP; split => //; exact/eqP.
apply/negligibleP.
by rewrite h; apply: emeasurable_fun_neq => //; [case: mf|case: mg].
rewrite h set_neq_lt setIUr measureU//.
- by rewrite [X in X + _]mufg add0e [LHS]mugf.
- by apply: emeasurable_fun_lt => //; [case: mf|case: mg].
- by apply: emeasurable_fun_lt => //; [case: mg|case: mf].
- apply/seteqP; split => [x [[Dx/= + [_]]]|//].
by move=> /lt_trans => /[apply]; rewrite ltxx.
Qed.

End integral_ae_eq.

(******************************************************************************)
(* * product measure *)
(******************************************************************************)
Expand Down
29 changes: 27 additions & 2 deletions theories/real_interval.v
Original file line number Diff line number Diff line change
Expand Up @@ -275,7 +275,7 @@ Coercion ereal_of_itv_bound T (b : itv_bound T) : \bar T :=
match b with BSide _ y => y%:E | +oo%O => +oo%E | -oo%O => -oo%E end.
Arguments ereal_of_itv_bound T !b.

Section erealDomainType.
Section itv_realDomainType.
Context (R : realDomainType).

Lemma le_bnd_ereal (a b : itv_bound R) : (a <= b)%O -> (a <= b)%E.
Expand Down Expand Up @@ -325,7 +325,32 @@ rewrite set_itvE predeqE => x; split => /=.
- by move: x => [x h|//|/(_ erefl)]; rewrite ?ltNyr.
Qed.

End erealDomainType.
End itv_realDomainType.

Section set_ereal.
Context (R : realType) T (f g : T -> \bar R).
Local Open Scope ereal_scope.

Let E j := [set x | f x - g x >= j.+1%:R^-1%:E].

Lemma set_lte_bigcup : [set x | f x > g x] = \bigcup_j E j.
Proof.
apply/seteqP; split => [x/=|x [n _]]; last first.
by rewrite /E/= -sube_gt0; apply: lt_le_trans.
move gxE : (g x) => gx; case: gx gxE => [gx| |gxoo fxoo]; last 2 first.
- by case: (f x).
- by exists 0%N => //; rewrite /E/= gxoo addey// ?leey// -ltNye.
move fxE : (f x) => fx; case: fx fxE => [fx fxE gxE|fxoo gxE _|//]; last first.
by exists 0%N => //; rewrite /E/= fxoo gxE// addye// leey.
rewrite lte_fin -subr_gt0 => fgx; exists `|floor (fx - gx)^-1%R|%N => //.
rewrite /E/= -natr1 natr_absz ger0_norm ?floor_ge0 ?invr_ge0; last exact/ltW.
rewrite fxE gxE lee_fin -[leRHS]invrK lef_pinv//.
- by apply/ltW; rewrite lt_succ_floor.
- by rewrite posrE// ltr_spaddr// ler0z floor_ge0 invr_ge0 ltW.
- by rewrite posrE invr_gt0.
Qed.

End set_ereal.

Lemma disj_itv_Rhull {R : realType} (A B : set R) : A `&` B = set0 ->
is_interval A -> is_interval B -> disjoint_itv (Rhull A) (Rhull B).
Expand Down

0 comments on commit dff5954

Please sign in to comment.