-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
3 changed files
with
136 additions
and
0 deletions.
There are no files selected for viewing
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,55 @@ | ||
import argparse | ||
import pdal | ||
from macro import * | ||
|
||
""" | ||
This tool shows how to use function of macro in a pdal pipeline | ||
""" | ||
|
||
def parse_args(): | ||
parser = argparse.ArgumentParser("Tools for apply pdal pipelines") | ||
parser.add_argument("--input", "-i", type=str, required=True, help="Input las file") | ||
parser.add_argument("--output", "-o", type=str, required=True, help="Output las file") | ||
return parser.parse_args() | ||
|
||
|
||
if __name__ == "__main__": | ||
args = parse_args() | ||
|
||
pipeline = pdal.Reader.las(args.input) | ||
|
||
# step 1 a 9 | ||
pipeline = add_radius_search(pipeline, 1, False, "Classification==2", build_condition("Classification", [4,5]), "Classification=102") | ||
pipeline = add_radius_search(pipeline, 1, False, "Classification==102", "Classification==2", "Classification=2") | ||
pipeline = add_radius_search(pipeline, 1, False, "Classification==3", "Classification==5", "Classification=103") | ||
pipeline = add_grid_decimation(pipeline, 0.75, "max", build_condition("Classification", [4,5,102,103]), "Classification=100") | ||
pipeline |= pdal.Filter.assign(value="Classification=2", where="Classification==102") | ||
pipeline |= pdal.Filter.assign(value="Classification=3", where="Classification==103") | ||
pipeline = add_grid_decimation(pipeline, 0.5, "max", "Classification==2", "Classification=102") | ||
pipeline = add_grid_decimation(pipeline, 0.5, "max", build_condition("Classification", [2,3,4,5,6,9,17,64,100]), "Classification=200") | ||
pipeline = add_radius_search(pipeline, 1.5, False, "Classification==102", build_condition("Classification", [4,5,6,9,17,64,100]), "Classification=100") | ||
pipeline |= pdal.Filter.assign(value="Classification=2", where="Classification==102") | ||
|
||
# step 10 | ||
pipeline = add_radius_search(pipeline, 1.5, False, "Classification==2", "Classification==17", "Classification=102") | ||
pipeline = add_radius_search(pipeline, 1.5, False, "Classification==102", build_condition("Classification", [2,3,4,5]), "Classification=2") | ||
|
||
# step 11 | ||
pipeline = add_radius_search(pipeline, 1.5, False, "Classification==3", "Classification==17", "Classification=103") | ||
pipeline = add_radius_search(pipeline, 1.5, False, "Classification==103", build_condition("Classification", [2,3,4,5]), "Classification=3") | ||
|
||
# step 12 | ||
pipeline = add_radius_search(pipeline, 1.5, False, "Classification==4", "Classification==17", "Classification=104") | ||
pipeline = add_radius_search(pipeline, 1.5, False, "Classification==104", build_condition("Classification", [2,3,4,5]), "Classification=4") | ||
|
||
# step 13 | ||
pipeline = add_radius_search(pipeline, 1.5, False, "Classification==5", "Classification==17", "Classification=105") | ||
pipeline = add_radius_search(pipeline, 1.5, False, "Classification==105", build_condition("Classification", [2,3,4,5]), "Classification=5") | ||
|
||
# step 14 | ||
pipeline = add_radius_search(pipeline, 1.5, False, "Classification==9", "Classification==17", "Classification=109") | ||
pipeline = add_radius_search(pipeline, 1.5, False, "Classification==109", "Classification==9", "Classification=9") | ||
|
||
pipeline |= pdal.Writer.las(extra_dims="all",minor_version=4,dataformat_id=6,filename=args.output) | ||
pipeline.execute() | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,81 @@ | ||
import argparse | ||
import pdal | ||
|
||
""" | ||
Some useful filters combinations for complete pdal pipeline | ||
""" | ||
|
||
|
||
def add_radius_search(pipeline, radius, search_3d, condition_src, condition_ref, condition_out ): | ||
""" | ||
search points from "condition_src" closed from "condition_ref", and reassign them to "condition_out" | ||
This combination is equivalent to the CloseBy macro of TerraScan | ||
radius : the search distance | ||
search_3d : the distance reseach is in 3d if True | ||
condition_src, condition_ref, condition_out : a pdal condition as "Classification==2" | ||
""" | ||
pipeline |= pdal.Filter.ferry(dimensions=f"=>REF_DOMAIN, =>SRS_DOMAIN, =>radius_search") | ||
pipeline |= pdal.Filter.assign(value=["SRS_DOMAIN = 0", f"SRS_DOMAIN = 1 WHERE {condition_src}", | ||
"REF_DOMAIN = 0", f"REF_DOMAIN = 1 WHERE {condition_ref}", | ||
"radius_search = 0"]) | ||
pipeline |= pdal.Filter.radius_search(radius=radius, src_domain="SRS_DOMAIN",reference_domain="REF_DOMAIN", | ||
output_name_attribute="radius_search", search_3d=search_3d) | ||
pipeline |= pdal.Filter.assign(value=condition_out,where="radius_search==1") | ||
return pipeline | ||
|
||
|
||
|
||
def add_grid_decimation(pipeline, grid_resolution, output_type, condition, condition_out): | ||
""" | ||
Select a points in a grid from "condition"; points not selected are reassign to "condition_out" | ||
This combination is equivalent to the Thin Points macro of TerraScan | ||
grid_resolution : resolution of the grid | ||
output_type : "max" or "min" (the highest or lower points of the grid) | ||
condition, condition_out : a pdal condition as "Classification==2" | ||
""" | ||
pipeline |= pdal.Filter.ferry(dimensions=f"=>grid,") | ||
pipeline |= pdal.Filter.assign(value="grid = 0") | ||
pipeline |= pdal.Filter.grid_decimation(resolution=grid_resolution, output_name_attribut="grid", | ||
output_type=output_type, where=condition) | ||
pipeline |= pdal.Filter.assign(value=condition_out,where=f"grid==0 && ({condition})") | ||
return pipeline | ||
|
||
|
||
|
||
def classify_hgt_ground(pipeline, hmin, hmax, condition, condition_out): | ||
""" | ||
reassign points from "condition" between "hmin" and "hmax" of the ground to "condition_out" | ||
This combination is equivalent to the ClassifyHgtGrd macro of TerraScan | ||
condition, condition_out : a pdal condition as "Classification==2" | ||
""" | ||
pipeline |= pdal.Filter.hag_delaunay(allow_extrapolation=True) | ||
condition_h = f"HeightAboveGround>{hmin} && HeightAboveGround<={hmax}" | ||
condition_h += " && " + condition | ||
pipeline |= pdal.Filter.assign(value=condition_out, where=condition_h) | ||
return pipeline | ||
|
||
|
||
|
||
def keep_non_planar_pts(pipeline, condition, condition_out): | ||
""" | ||
reassign points from "condition" who are planar to "condition_out" | ||
This combination is equivalent to the ClassifyModelKey macro of TerraScan | ||
condition, condition_out : a pdal condition as "Classification==2" | ||
""" | ||
pipeline |= pdal.Filter.approximatecoplanar(knn=8,thresh1=25,thresh2=6,where=condition) | ||
pipeline |= pdal.Filter.assign(value=condition_out,where=f"Coplanar==0 && ({condition})") | ||
return pipeline | ||
|
||
|
||
|
||
|
||
def build_condition(key, values): | ||
""" | ||
build 'key==values[0] || key==values[1] ...' | ||
""" | ||
condition = "" | ||
for v in values: | ||
condition += key+"=="+str(v) | ||
if v!=values[-1]:condition += " || " | ||
return condition | ||
|