Skip to content

Commit

Permalink
universal property of the truncation
Browse files Browse the repository at this point in the history
  • Loading branch information
MevenBertrand committed Apr 16, 2021
1 parent 28788f5 commit 7bfd6cc
Showing 1 changed file with 27 additions and 10 deletions.
37 changes: 27 additions & 10 deletions 01-introduction-to-hott/solutionsMevenLennonBertrand.v
Original file line number Diff line number Diff line change
Expand Up @@ -269,10 +269,25 @@ Section Part_4_Equivalences.
Definition IsPropTrunc (A Q : Type) (q : A -> Q) :=
forall P : hProp, IsEquiv (fun f : Q -> P => f ∘ q).

Theorem univ_trunc (A : Type) : (IsPropTrunc A (Trunc (-1) A) tr).
Theorem univ_trunc `{Funext} (A : Type) : (IsPropTrunc A (Trunc (-1) A) tr).
Proof.
Admitted.

intros Q.
srapply isequiv_adjointify.
- intros f a.
rapply Trunc_rec.
1: apply Q.
all: eassumption.
- intros f.
apply path_forall.
reflexivity.
- intros f.
apply path_forall.
intros a.
pattern a.
srapply Trunc_ind.
reflexivity.
Qed.

End Exercise_4_2.

End Part_4_Equivalences.
Expand All @@ -285,13 +300,13 @@ Section Part_5_Univalence.

Theorem weasel : Univalence -> Contr { A : hProp & A }.
Proof.
exists (Unit_hp ; tt).
intros [A a].
unshelve eapply path_sigma'.
- apply path_iff_hprop.
+ exact (fun _ => a).
+ exact (fun _ => tt).
- apply A.
exists (Unit_hp ; tt).
intros [A a].
unshelve eapply path_sigma'.
- apply path_iff_hprop.
+ exact (fun _ => a).
+ exact (fun _ => tt).
- apply A.
Defined.

End Exercise_5_1.
Expand All @@ -300,6 +315,8 @@ Section Part_5_Univalence.

(* Show that Σ (A : U) . isSet A is not a set. Hint: (2 ≃ 2) ≃ 2. *)



Lemma two_equiv_two `{Funext} : (Bool <~> Bool) <~> Bool.
Proof.
unshelve eapply equiv_adjointify.
Expand Down

0 comments on commit 7bfd6cc

Please sign in to comment.