[ICML 2024]- Unsupervised Parameter-free Simplicial Representation Learning with Scattering Transforms
Code for SSN model proposed in the ICML 2024 submission.
- Python 3.9
- PyTorch 2.0
- dgl 1.0.2.cu113
- gudhi 3.8.0
Node classification: 'contact-high-school', 'contact-primary-school' and 'senate-bills'.
Simplicial closure: 'contact-high-school', 'contact-primary-school' and 'email-Enron'.
Simplex prediction: 'madison-restaurant-reviews', 'algebra-questions' and 'geometry-questions'.
Graph classification: 'Proteins', 'NCI1', 'IMDB-B', 'REDDIT-B', and 'REDDIT-M5'.
Trajectory prediction: 'Ocean drifters', 'Mesh' and 'Synthetic'.
To run the codes, use the following commands:
# Node classification example
python node_classification.py -- data contact-high-school --gpu 0 --dim 3, --J 4, --split 0.2 --include_boundary True
# Simplicial closure example
python simplicial_closure.py -- data contact-high-school --gpu 0 --dim 3, --J 4, --split 0.2 --include_boundary True
# Graph classification example
python graph_classification.py --data proteins --gpu 0 --J 2 --include_boundary True
# Trajectory prediction example
python trajectory_prediction.py --data syn --J 4 --gpu 0
# Simplex prediction example
python simplex_prediction.py -- data madison-restaurant-reviews --gpu 0 --dim 3, --J 4, --split 0.2 --include_boundary True