Skip to content

Commit

Permalink
Add files via upload
Browse files Browse the repository at this point in the history
  • Loading branch information
luciafuriassi authored Mar 25, 2021
1 parent 7cb9c6b commit edd293a
Show file tree
Hide file tree
Showing 2 changed files with 398 additions and 0 deletions.
243 changes: 243 additions & 0 deletions calc_props.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,243 @@
#
# Calculation of molecular descriptors and complexity index
#
# Implements RDKit
#
# Bryon Drown, May 2015
# Updated Oct. 9, 2015
# University of Illinois, Urbana-Champaign
#
__doc__ = """
Performs calculations of physiochemical properties of set of compounds
Properties to be calculated:
Fsp3, chiral centers
"""

import sys
from rdkit import Chem
from rdkit.Chem import Descriptors
from rdkit.ML.Descriptors import MoleculeDescriptors
from collections import defaultdict
from collections import OrderedDict
import optparse
from os.path import basename
import csv


def main():

args = parse_args()

ms = [x for x in Chem.SDMolSupplier(args.input_file) if x is not None]

mols = []
for mol in ms:
remove_ligprep_props(mol)
temp = calc_builtin_props(mol)
calcRingDescriptors(temp)
calc_chiral_centers(temp)
mols.append(temp)

filename_base = args.output_path + '/' + \
basename(args.input_file).strip((".sdf"))
if(args.csv):
with open(filename_base + '.csv', 'w') as out:
write_mol_csv(mols, out)
if(args.sdf):
write_mol_sdf(mols, filename_base)


def write_mol_csv(mols, outfile, includeChirality=True):
"""Writes list of molecules and properties to CSV file
"""
w = csv.writer(outfile)

# Get prop names from first mol and get header
first = mols[0]
propNames = list(first.GetPropNames())
outL = []
outL.append('SMILES')
outL.extend(propNames)
w.writerow(outL)

# Write out properties for each molecule
for mol in mols:
smi = Chem.MolToSmiles(mol, isomericSmiles=includeChirality)
outL = []
outL.append(smi)
for prop in propNames:
if mol.HasProp(prop):
outL.append(str(mol.GetProp(prop)))
else:
outL.append('')
w.writerow(outL)
return


def csv_header(mol):
"""Creates string for header of csv file
"""
properties = ['name', 'smiles']
props = mol.GetPropNames()
for prop in props:
properties.append(prop)
return ','.join(map(str, properties))


def mol_props_to_csv(mol):
"""Creates string for properties of individual molecule when writing to csv
TODO: keep width the same when some compounds don't have a given property
"""
values = []
values.append(mol.GetProp('_Name'))
values.append(Chem.MolToSmiles(mol, isomericSmiles=True))

properties = mol.GetPropNames()
for prop in properties:
values.append(mol.GetProp(prop))

return ','.join(map(str, values))


def write_mol_sdf(mols, filename):
"""Writes list of molecules and properties to SDF file
"""
ms_wr = Chem.SDWriter(filename + ".sdf")
for mol in mols:
ms_wr.write(mol)
ms_wr.close()


def parse_args():
"""Parse the command line options.
@return: All script options
"""

parser = optparse.OptionParser(__doc__)
parser.set_defaults(verbose=False)
parser.add_option("-i", "--input", dest="input_file", default=None,
help="Input sdf file that contains structures for which properties will be calculated [default: %default]")
parser.add_option("-o", "--output", dest="output_path", default='',
help="Folder to which output files should be saved [default: %default]")
parser.add_option("-c", "--csv", action="store_true", dest="csv")
parser.add_option("-s", "--sdf", action="store_true", dest="sdf")

(options, args) = parser.parse_args()
if(options.input_file == None):
print("Input file %s is needed" % options.input_file)
parser.print_help()
sys.exit(1)
return options


def remove_ligprep_props(m):
"""The properties that are attached to molecules by ligprep were are removed
"""
props = ['chiral flag', 'version', 's_m_source_file', 'i_m_source_file_index', 'i_lp_mmshare_version', 'r_lp_tautomer_probability',
'r_epik_Ionization_Penalty', 'r_epik_Ionization_Penalty_Charging', 'r_epik_Ionization_Penalty_Neutral',
'r_epik_State_Penalty', 'r_epik_Charging_Adjusted_Penalty', 'i_epik_Tot_Q', 'i_epik_Tot_abs_Q', 'i_f3d_flags',
's_lp_Force_Field', 'r_lp_Energy', 'b_lp_Chiralities_Consistent', 's_lp_Variant', 's_epik_Chemistry_Notes', 's_epik_input',
's_epik_cmdline']
for prop in props:
m.ClearProp(prop)


def calc_builtin_props(m):
"""Calculates properties that are part of rdkit base
@param m: molecule for which to perform calculations
@return: molecule with properties attached
"""

nms = ('FractionCSP3', 'MolWt', 'RingCount')
calc = MoleculeDescriptors.MolecularDescriptorCalculator(nms)

descrs = calc.CalcDescriptors(m)
for x in range(len(descrs)):
m.SetProp(str(nms[x]), str(descrs[x]))

return m

def calc_chiral_centers(m):
"""Calculates the number of chiral centers in a molecule
@param m: molecule for which to perform calculations
"""

centers = Chem.FindMolChiralCenters(m, force=True, includeUnassigned=True)
m.SetProp('NumChiralCenters', str(len(centers)))
return



def calcRingDescriptors(m):
"""Calculates a set of properties that measure ring complexity
@param m: molecule for which to perform calculations
"""

nBonds = m.GetNumBonds()
nAtoms = m.GetNumAtoms()
cyclomatic = nBonds - nAtoms + 1
if(cyclomatic < 1):
return

ri = m.GetRingInfo()
if(ri.NumRings() < 1):
return
# get total ring path and nBondRings
totalRing = 0
Bonds = []
Bridges = []
for ring in ri.BondRings():

for id in ring:

if (ri.NumBondRings(id) > 1):

Bridges.append(id)
totalRing += 1
Bonds.append(id)

# remove duplicates, then get length
nBondRings = len(OrderedDict.fromkeys(Bonds).keys())
nBridgeEdges = len(OrderedDict.fromkeys(Bridges).keys())

# get nAtomRings
Atoms = []
for ring in ri.AtomRings():

for id in ring:

Atoms.append(id)
nAtomRings = len(OrderedDict.fromkeys(Atoms).keys())

# descriptors
ringFusionDensity = 2 * float(nBridgeEdges) / float(nAtomRings)
ringComplexityIndex = float(totalRing) / float(nAtomRings)
molecularCyclizedDegree = float(nAtomRings) / float(nAtoms)
nRingSystems = (nBonds - nBondRings) - (nAtoms - nAtomRings) + 1
if(nRingSystems < 1):

ringFusionDegree = 0
else:

ringFusionDegree = float(cyclomatic) / float(nRingSystems)

# set props
m.SetProp('TotalRing', str(totalRing))
m.SetProp('NumBridges', str(nBridgeEdges))
m.SetProp('nBondRings', str(nBondRings))
m.SetProp('nAtomRings', str(nAtomRings))
m.SetProp('ringFusionDensity', str(ringFusionDensity))
m.SetProp('ringFusionDegree', str(ringFusionDegree))
m.SetProp('ringComplexityIndex', str(ringComplexityIndex))
m.SetProp('molecularCyclizedDegree', str(molecularCyclizedDegree))
m.SetProp('NumRingSystems', str(nRingSystems))

return


if __name__ == '__main__':
main()
155 changes: 155 additions & 0 deletions my_scaffold_metrisc.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,155 @@
# -*- coding: utf-8 -*-
"""
Created on Sun Feb 21 14:05:04 2021
@author: lucia
"""

# Import scaffoldgraph
import scaffoldgraph as sg

# Import networkx
import networkx as nx

# Import plotting tools
import matplotlib.pyplot as plt

import numpy as np

# Import rdkit
from rdkit.Chem import Draw
from rdkit import Chem
import rdkit
import random
import os
from collections import Counter
os.chdir('C:/Users/lucia/OneDrive/Desktop/ScaffoldGraph-master')

#%%
sdf_file = ('limonin.sdf') # Example SDF file (200 PubChem compounds)
#smi_file = ('smiles_plateIA.smi')
supplier = Chem.SDMolSupplier(sdf_file)
network = sg.ScaffoldNetwork.from_sdf(sdf_file, progress=True)

# We can access the number of molecule nodes and scaffold nodes in the graph
n_scaffolds_net = network.num_scaffold_nodes
n_molecules_net = network.num_molecule_nodes

print('\nGenerated scaffold network from {} molecules with {} scaffolds\n'.format(n_molecules_net, n_scaffolds_net))
#%%
# Molecules are stored in the network with their _Name property as a key
# When using SDF format rdkit assigns the _Name property from the TITLE section
# In this case this refers to a PubChem ID

molecules = list(network.get_molecule_nodes())

# Calculate number of scaffolds and singletons
frag_to_save = []
for i in range(len(molecules)):
mol_id = i
pubchem_id = molecules[mol_id]
smiles_iter = network.nodes[pubchem_id]['smiles']
frags_iter = sg.get_all_murcko_fragments(Chem.MolFromSmiles(smiles_iter))
num_rings = []
for mol in frags_iter:
num_rings.append(rdkit.Chem.rdMolDescriptors.CalcNumRings(mol))
m = max(num_rings)
position_max = [i for i, j in enumerate(num_rings) if j == m]
frag_to_save.append(frags_iter[position_max[0]])
list_smiles = []
for frag_saved in frag_to_save:
list_smiles.append(Chem.MolToSmiles(frag_saved))

smiles_no_duplicate = set(list_smiles)

count_unique_smiles = Counter(list_smiles)
number_of_unique_smiles= []

for key_count in count_unique_smiles.keys():
if count_unique_smiles[key_count]==1:
number_of_unique_smiles.append(count_unique_smiles[key_count])
# Number of scaffold
N = len(smiles_no_duplicate)
Nsing = sum(number_of_unique_smiles)

print("Number of scaffolds is",N)
print("Number of singletons is",Nsing)
#%%
# We can generate a scaffold tree from the SDF file just like before

#tree = sg.ScaffoldTree.from_smiles_file(smi_file, progress=True)
tree = sg.ScaffoldTree.from_sdf(sdf_file, progress=True)

# We can access the number of molecule nodes and scaffold nodes in the graph
n_scaffolds_tree = tree.num_scaffold_nodes
n_molecules_tree = tree.num_molecule_nodes

#print('\nGenerated scaffold tree from {} molecules with {} scaffolds\n'.format(n_molecules_tree, n_scaffolds_tree))

# The output is a forest structure (multiple trees)

#print('Graph is a Forest:', nx.is_forest(tree))
#%%
# We can get the number of scaffolds in each hierarchy easily (The numbers are different to the network)

counts_tree = tree.get_hierarchy_sizes()
lists = sorted(counts_tree.items())
x, y = zip(*lists)

# Plot sizes as bar chart

plt.figure(figsize=(8, 6))
plt.bar(x, y)
plt.xlabel('Hierarchy')
plt.ylabel('Scaffold Count')
plt.title('Number of Scaffolds per Hierarchy (Tree)')
plt.show()
#%%
# frag_all_to_save = []
# num_rings_all = []
# num_frag_per_mol = []
# for i in range(len(molecules)):
# mol_id = i
# pubchem_id = molecules[mol_id]
# smiles_iter = network.nodes[pubchem_id]['smiles']
# frags_iter = sg.get_all_murcko_fragments(Chem.MolFromSmiles(smiles_iter))
# num_frag_per_mol.append(len(frags_iter))
# frag_all_to_save.append(frags_iter)
# all_frags = [item for sublist in frag_all_to_save for item in sublist]
# for mol in all_frags:
# num_rings_all.append(rdkit.Chem.rdMolDescriptors.CalcNumRings(mol))
# #all_frags = [item for sublist in frag_all_to_save for item in sublist]

# list_all_smiles = []
# for frag_iteration in all_frags:
# list_all_smiles.append(Chem.MolToSmiles(frag_iteration))

# count_all_smiles = Counter(list_all_smiles)

# perc_mol = []
# num_mol = []
# for key_smile in count_all_smiles.keys():
# perc_mol.append(count_all_smiles[key_smile]/len(molecules))
# num_mol.append(count_all_smiles[key_smile])

# perc_mol_sorted = 1-np.sort(np.array(perc_mol))[::-1]

# list_smiles = []
# for frag_saved in frag_to_save:
# list_smiles.append(Chem.MolToSmiles(frag_saved))

# smiles_no_duplicate = set(list_smiles)

# count_unique_smiles = Counter(list_smiles)
# number_of_unique_smiles= []

# for key_count in count_unique_smiles.keys():
# if count_unique_smiles[key_count]==1:
# number_of_unique_smiles.append(count_unique_smiles[key_count])

# def ecdf(data):
# """ Compute ECDF """
# x = np.sort(data)
# n = x.size
# y = np.arange(1, n+1) / n
# return(x,y)

0 comments on commit edd293a

Please sign in to comment.