-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
7cb9c6b
commit edd293a
Showing
2 changed files
with
398 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,243 @@ | ||
# | ||
# Calculation of molecular descriptors and complexity index | ||
# | ||
# Implements RDKit | ||
# | ||
# Bryon Drown, May 2015 | ||
# Updated Oct. 9, 2015 | ||
# University of Illinois, Urbana-Champaign | ||
# | ||
__doc__ = """ | ||
Performs calculations of physiochemical properties of set of compounds | ||
Properties to be calculated: | ||
Fsp3, chiral centers | ||
""" | ||
|
||
import sys | ||
from rdkit import Chem | ||
from rdkit.Chem import Descriptors | ||
from rdkit.ML.Descriptors import MoleculeDescriptors | ||
from collections import defaultdict | ||
from collections import OrderedDict | ||
import optparse | ||
from os.path import basename | ||
import csv | ||
|
||
|
||
def main(): | ||
|
||
args = parse_args() | ||
|
||
ms = [x for x in Chem.SDMolSupplier(args.input_file) if x is not None] | ||
|
||
mols = [] | ||
for mol in ms: | ||
remove_ligprep_props(mol) | ||
temp = calc_builtin_props(mol) | ||
calcRingDescriptors(temp) | ||
calc_chiral_centers(temp) | ||
mols.append(temp) | ||
|
||
filename_base = args.output_path + '/' + \ | ||
basename(args.input_file).strip((".sdf")) | ||
if(args.csv): | ||
with open(filename_base + '.csv', 'w') as out: | ||
write_mol_csv(mols, out) | ||
if(args.sdf): | ||
write_mol_sdf(mols, filename_base) | ||
|
||
|
||
def write_mol_csv(mols, outfile, includeChirality=True): | ||
"""Writes list of molecules and properties to CSV file | ||
""" | ||
w = csv.writer(outfile) | ||
|
||
# Get prop names from first mol and get header | ||
first = mols[0] | ||
propNames = list(first.GetPropNames()) | ||
outL = [] | ||
outL.append('SMILES') | ||
outL.extend(propNames) | ||
w.writerow(outL) | ||
|
||
# Write out properties for each molecule | ||
for mol in mols: | ||
smi = Chem.MolToSmiles(mol, isomericSmiles=includeChirality) | ||
outL = [] | ||
outL.append(smi) | ||
for prop in propNames: | ||
if mol.HasProp(prop): | ||
outL.append(str(mol.GetProp(prop))) | ||
else: | ||
outL.append('') | ||
w.writerow(outL) | ||
return | ||
|
||
|
||
def csv_header(mol): | ||
"""Creates string for header of csv file | ||
""" | ||
properties = ['name', 'smiles'] | ||
props = mol.GetPropNames() | ||
for prop in props: | ||
properties.append(prop) | ||
return ','.join(map(str, properties)) | ||
|
||
|
||
def mol_props_to_csv(mol): | ||
"""Creates string for properties of individual molecule when writing to csv | ||
TODO: keep width the same when some compounds don't have a given property | ||
""" | ||
values = [] | ||
values.append(mol.GetProp('_Name')) | ||
values.append(Chem.MolToSmiles(mol, isomericSmiles=True)) | ||
|
||
properties = mol.GetPropNames() | ||
for prop in properties: | ||
values.append(mol.GetProp(prop)) | ||
|
||
return ','.join(map(str, values)) | ||
|
||
|
||
def write_mol_sdf(mols, filename): | ||
"""Writes list of molecules and properties to SDF file | ||
""" | ||
ms_wr = Chem.SDWriter(filename + ".sdf") | ||
for mol in mols: | ||
ms_wr.write(mol) | ||
ms_wr.close() | ||
|
||
|
||
def parse_args(): | ||
"""Parse the command line options. | ||
@return: All script options | ||
""" | ||
|
||
parser = optparse.OptionParser(__doc__) | ||
parser.set_defaults(verbose=False) | ||
parser.add_option("-i", "--input", dest="input_file", default=None, | ||
help="Input sdf file that contains structures for which properties will be calculated [default: %default]") | ||
parser.add_option("-o", "--output", dest="output_path", default='', | ||
help="Folder to which output files should be saved [default: %default]") | ||
parser.add_option("-c", "--csv", action="store_true", dest="csv") | ||
parser.add_option("-s", "--sdf", action="store_true", dest="sdf") | ||
|
||
(options, args) = parser.parse_args() | ||
if(options.input_file == None): | ||
print("Input file %s is needed" % options.input_file) | ||
parser.print_help() | ||
sys.exit(1) | ||
return options | ||
|
||
|
||
def remove_ligprep_props(m): | ||
"""The properties that are attached to molecules by ligprep were are removed | ||
""" | ||
props = ['chiral flag', 'version', 's_m_source_file', 'i_m_source_file_index', 'i_lp_mmshare_version', 'r_lp_tautomer_probability', | ||
'r_epik_Ionization_Penalty', 'r_epik_Ionization_Penalty_Charging', 'r_epik_Ionization_Penalty_Neutral', | ||
'r_epik_State_Penalty', 'r_epik_Charging_Adjusted_Penalty', 'i_epik_Tot_Q', 'i_epik_Tot_abs_Q', 'i_f3d_flags', | ||
's_lp_Force_Field', 'r_lp_Energy', 'b_lp_Chiralities_Consistent', 's_lp_Variant', 's_epik_Chemistry_Notes', 's_epik_input', | ||
's_epik_cmdline'] | ||
for prop in props: | ||
m.ClearProp(prop) | ||
|
||
|
||
def calc_builtin_props(m): | ||
"""Calculates properties that are part of rdkit base | ||
@param m: molecule for which to perform calculations | ||
@return: molecule with properties attached | ||
""" | ||
|
||
nms = ('FractionCSP3', 'MolWt', 'RingCount') | ||
calc = MoleculeDescriptors.MolecularDescriptorCalculator(nms) | ||
|
||
descrs = calc.CalcDescriptors(m) | ||
for x in range(len(descrs)): | ||
m.SetProp(str(nms[x]), str(descrs[x])) | ||
|
||
return m | ||
|
||
def calc_chiral_centers(m): | ||
"""Calculates the number of chiral centers in a molecule | ||
@param m: molecule for which to perform calculations | ||
""" | ||
|
||
centers = Chem.FindMolChiralCenters(m, force=True, includeUnassigned=True) | ||
m.SetProp('NumChiralCenters', str(len(centers))) | ||
return | ||
|
||
|
||
|
||
def calcRingDescriptors(m): | ||
"""Calculates a set of properties that measure ring complexity | ||
@param m: molecule for which to perform calculations | ||
""" | ||
|
||
nBonds = m.GetNumBonds() | ||
nAtoms = m.GetNumAtoms() | ||
cyclomatic = nBonds - nAtoms + 1 | ||
if(cyclomatic < 1): | ||
return | ||
|
||
ri = m.GetRingInfo() | ||
if(ri.NumRings() < 1): | ||
return | ||
# get total ring path and nBondRings | ||
totalRing = 0 | ||
Bonds = [] | ||
Bridges = [] | ||
for ring in ri.BondRings(): | ||
|
||
for id in ring: | ||
|
||
if (ri.NumBondRings(id) > 1): | ||
|
||
Bridges.append(id) | ||
totalRing += 1 | ||
Bonds.append(id) | ||
|
||
# remove duplicates, then get length | ||
nBondRings = len(OrderedDict.fromkeys(Bonds).keys()) | ||
nBridgeEdges = len(OrderedDict.fromkeys(Bridges).keys()) | ||
|
||
# get nAtomRings | ||
Atoms = [] | ||
for ring in ri.AtomRings(): | ||
|
||
for id in ring: | ||
|
||
Atoms.append(id) | ||
nAtomRings = len(OrderedDict.fromkeys(Atoms).keys()) | ||
|
||
# descriptors | ||
ringFusionDensity = 2 * float(nBridgeEdges) / float(nAtomRings) | ||
ringComplexityIndex = float(totalRing) / float(nAtomRings) | ||
molecularCyclizedDegree = float(nAtomRings) / float(nAtoms) | ||
nRingSystems = (nBonds - nBondRings) - (nAtoms - nAtomRings) + 1 | ||
if(nRingSystems < 1): | ||
|
||
ringFusionDegree = 0 | ||
else: | ||
|
||
ringFusionDegree = float(cyclomatic) / float(nRingSystems) | ||
|
||
# set props | ||
m.SetProp('TotalRing', str(totalRing)) | ||
m.SetProp('NumBridges', str(nBridgeEdges)) | ||
m.SetProp('nBondRings', str(nBondRings)) | ||
m.SetProp('nAtomRings', str(nAtomRings)) | ||
m.SetProp('ringFusionDensity', str(ringFusionDensity)) | ||
m.SetProp('ringFusionDegree', str(ringFusionDegree)) | ||
m.SetProp('ringComplexityIndex', str(ringComplexityIndex)) | ||
m.SetProp('molecularCyclizedDegree', str(molecularCyclizedDegree)) | ||
m.SetProp('NumRingSystems', str(nRingSystems)) | ||
|
||
return | ||
|
||
|
||
if __name__ == '__main__': | ||
main() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,155 @@ | ||
# -*- coding: utf-8 -*- | ||
""" | ||
Created on Sun Feb 21 14:05:04 2021 | ||
@author: lucia | ||
""" | ||
|
||
# Import scaffoldgraph | ||
import scaffoldgraph as sg | ||
|
||
# Import networkx | ||
import networkx as nx | ||
|
||
# Import plotting tools | ||
import matplotlib.pyplot as plt | ||
|
||
import numpy as np | ||
|
||
# Import rdkit | ||
from rdkit.Chem import Draw | ||
from rdkit import Chem | ||
import rdkit | ||
import random | ||
import os | ||
from collections import Counter | ||
os.chdir('C:/Users/lucia/OneDrive/Desktop/ScaffoldGraph-master') | ||
|
||
#%% | ||
sdf_file = ('limonin.sdf') # Example SDF file (200 PubChem compounds) | ||
#smi_file = ('smiles_plateIA.smi') | ||
supplier = Chem.SDMolSupplier(sdf_file) | ||
network = sg.ScaffoldNetwork.from_sdf(sdf_file, progress=True) | ||
|
||
# We can access the number of molecule nodes and scaffold nodes in the graph | ||
n_scaffolds_net = network.num_scaffold_nodes | ||
n_molecules_net = network.num_molecule_nodes | ||
|
||
print('\nGenerated scaffold network from {} molecules with {} scaffolds\n'.format(n_molecules_net, n_scaffolds_net)) | ||
#%% | ||
# Molecules are stored in the network with their _Name property as a key | ||
# When using SDF format rdkit assigns the _Name property from the TITLE section | ||
# In this case this refers to a PubChem ID | ||
|
||
molecules = list(network.get_molecule_nodes()) | ||
|
||
# Calculate number of scaffolds and singletons | ||
frag_to_save = [] | ||
for i in range(len(molecules)): | ||
mol_id = i | ||
pubchem_id = molecules[mol_id] | ||
smiles_iter = network.nodes[pubchem_id]['smiles'] | ||
frags_iter = sg.get_all_murcko_fragments(Chem.MolFromSmiles(smiles_iter)) | ||
num_rings = [] | ||
for mol in frags_iter: | ||
num_rings.append(rdkit.Chem.rdMolDescriptors.CalcNumRings(mol)) | ||
m = max(num_rings) | ||
position_max = [i for i, j in enumerate(num_rings) if j == m] | ||
frag_to_save.append(frags_iter[position_max[0]]) | ||
list_smiles = [] | ||
for frag_saved in frag_to_save: | ||
list_smiles.append(Chem.MolToSmiles(frag_saved)) | ||
|
||
smiles_no_duplicate = set(list_smiles) | ||
|
||
count_unique_smiles = Counter(list_smiles) | ||
number_of_unique_smiles= [] | ||
|
||
for key_count in count_unique_smiles.keys(): | ||
if count_unique_smiles[key_count]==1: | ||
number_of_unique_smiles.append(count_unique_smiles[key_count]) | ||
# Number of scaffold | ||
N = len(smiles_no_duplicate) | ||
Nsing = sum(number_of_unique_smiles) | ||
|
||
print("Number of scaffolds is",N) | ||
print("Number of singletons is",Nsing) | ||
#%% | ||
# We can generate a scaffold tree from the SDF file just like before | ||
|
||
#tree = sg.ScaffoldTree.from_smiles_file(smi_file, progress=True) | ||
tree = sg.ScaffoldTree.from_sdf(sdf_file, progress=True) | ||
|
||
# We can access the number of molecule nodes and scaffold nodes in the graph | ||
n_scaffolds_tree = tree.num_scaffold_nodes | ||
n_molecules_tree = tree.num_molecule_nodes | ||
|
||
#print('\nGenerated scaffold tree from {} molecules with {} scaffolds\n'.format(n_molecules_tree, n_scaffolds_tree)) | ||
|
||
# The output is a forest structure (multiple trees) | ||
|
||
#print('Graph is a Forest:', nx.is_forest(tree)) | ||
#%% | ||
# We can get the number of scaffolds in each hierarchy easily (The numbers are different to the network) | ||
|
||
counts_tree = tree.get_hierarchy_sizes() | ||
lists = sorted(counts_tree.items()) | ||
x, y = zip(*lists) | ||
|
||
# Plot sizes as bar chart | ||
|
||
plt.figure(figsize=(8, 6)) | ||
plt.bar(x, y) | ||
plt.xlabel('Hierarchy') | ||
plt.ylabel('Scaffold Count') | ||
plt.title('Number of Scaffolds per Hierarchy (Tree)') | ||
plt.show() | ||
#%% | ||
# frag_all_to_save = [] | ||
# num_rings_all = [] | ||
# num_frag_per_mol = [] | ||
# for i in range(len(molecules)): | ||
# mol_id = i | ||
# pubchem_id = molecules[mol_id] | ||
# smiles_iter = network.nodes[pubchem_id]['smiles'] | ||
# frags_iter = sg.get_all_murcko_fragments(Chem.MolFromSmiles(smiles_iter)) | ||
# num_frag_per_mol.append(len(frags_iter)) | ||
# frag_all_to_save.append(frags_iter) | ||
# all_frags = [item for sublist in frag_all_to_save for item in sublist] | ||
# for mol in all_frags: | ||
# num_rings_all.append(rdkit.Chem.rdMolDescriptors.CalcNumRings(mol)) | ||
# #all_frags = [item for sublist in frag_all_to_save for item in sublist] | ||
|
||
# list_all_smiles = [] | ||
# for frag_iteration in all_frags: | ||
# list_all_smiles.append(Chem.MolToSmiles(frag_iteration)) | ||
|
||
# count_all_smiles = Counter(list_all_smiles) | ||
|
||
# perc_mol = [] | ||
# num_mol = [] | ||
# for key_smile in count_all_smiles.keys(): | ||
# perc_mol.append(count_all_smiles[key_smile]/len(molecules)) | ||
# num_mol.append(count_all_smiles[key_smile]) | ||
|
||
# perc_mol_sorted = 1-np.sort(np.array(perc_mol))[::-1] | ||
|
||
# list_smiles = [] | ||
# for frag_saved in frag_to_save: | ||
# list_smiles.append(Chem.MolToSmiles(frag_saved)) | ||
|
||
# smiles_no_duplicate = set(list_smiles) | ||
|
||
# count_unique_smiles = Counter(list_smiles) | ||
# number_of_unique_smiles= [] | ||
|
||
# for key_count in count_unique_smiles.keys(): | ||
# if count_unique_smiles[key_count]==1: | ||
# number_of_unique_smiles.append(count_unique_smiles[key_count]) | ||
|
||
# def ecdf(data): | ||
# """ Compute ECDF """ | ||
# x = np.sort(data) | ||
# n = x.size | ||
# y = np.arange(1, n+1) / n | ||
# return(x,y) |