git clone [email protected]:Laurits7/ml-tau-en-reg.git
The latest merged ntuples for training are here:
$ du -csh /scratch/persistent/joosep/ml-tau/20240402_full_stats_merged/*
490M /scratch/persistent/joosep/ml-tau/20240402_full_stats_merged/qq_test.parquet
2.0G /scratch/persistent/joosep/ml-tau/20240402_full_stats_merged/qq_train.parquet
30M /scratch/persistent/joosep/ml-tau/20240402_full_stats_merged/zh_test.parquet
119M /scratch/persistent/joosep/ml-tau/20240402_full_stats_merged/zh_train.parquet
26M /scratch/persistent/joosep/ml-tau/20240402_full_stats_merged/z_test.parquet
101M /scratch/persistent/joosep/ml-tau/20240402_full_stats_merged/z_train.parquet
5.7M /local/joosep/ml-tau-en-reg/results/240524_cosinescheduler/dm_multiclass/LorentzNet
8.1M /local/joosep/ml-tau-en-reg/results/240528_PT_num_layers_4/dm_multiclass/ParticleTransformer
6.4M /local/joosep/ml-tau-en-reg/results/240524_cosinescheduler/dm_multiclass/SimpleDNN
6.1M /local/joosep/ml-tau-en-reg/results/240524_cosinescheduler/jet_regression/LorentzNet
14M /local/joosep/ml-tau-en-reg/results/240524_cosinescheduler/jet_regression/ParticleTransformer
6.7M /local/joosep/ml-tau-en-reg/results/240524_cosinescheduler/jet_regression/SimpleDNN
All the necessary packages are installed to the singularity image used in the run.sh
script.
In order to run the scripts do:
./run.sh python3 [XYZ]
To test locally on a fraction of the data
./run.sh python3 enreg/scripts/trainModel.py output_dir=training-outputs/mytest fraction_train=0.1 fraction_valid=0.1 training.num_epochs=2 model_type=SimpleDNN training_type=jet_regression
./run.sh python3 enreg/scripts/trainModel.py output_dir=training-outputs/mytest fraction_train=0.1 fraction_valid=0.1 training.num_epochs=2 model_type=SimpleDNN training_type=dm_multiclass
The configuration the models starts at enreg/config/model_training.yaml
.
To submit the training of the models to gpu0
, check and run
./enreg/scripts/submit-pytorch-gpu-all.sh
Change enreg/config/benchmarking.yaml
and enreg/config/metrics/regression.yaml
as needed.
./run.sh python3 enreg/scripts/calculate_regression_metrics.py
and
notebooks/DM_CM.ipynb
notebooks/losses.ipynb
./run.sh jupyter notebook --no-browser
Contributing to the project has the following requirements:
- Document each functionality you add (i.e., docstrings for each function you add)
- Follow the PEP8 guidelines
- Create a new branch when making edits and create a Pull Request (PR) for it to be merged to the
main
branch. Direct pushes to themain
branch are disabled. - Recommended: Add unit tests for the functionality