-
Notifications
You must be signed in to change notification settings - Fork 7
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
plt_temp -> plt_viz, plt_temp2 -> plt_temp
- Loading branch information
1 parent
a95bef8
commit e9b81f3
Showing
2 changed files
with
319 additions
and
65 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,159 @@ | ||
import argparse | ||
import torch | ||
import matplotlib.pyplot as plt | ||
from matplotlib.colors import LinearSegmentedColormap, BoundaryNorm | ||
import numpy as np | ||
import os | ||
from pathlib import Path | ||
import subprocess | ||
import scipy.fft as sfft | ||
from dataclasses import dataclass | ||
|
||
def parse_args(): | ||
parser = argparse.ArgumentParser() | ||
parser.add_argument('--path', required=True, type=str, | ||
help='Path to directory with model and sim output.pt files') | ||
return parser.parse_args() | ||
|
||
@dataclass | ||
class BoilingData: | ||
temp: torch.Tensor | ||
|
||
def load_vel_data(temp_path): | ||
pred = BoilingData( | ||
torch.load(f'{temp_path}/model_ouput.pt').numpy()) | ||
label = BoilingData( | ||
torch.load(f'{temp_path}/sim_ouput.pt').numpy()) | ||
return pred, label | ||
|
||
def main(): | ||
args = parse_args() | ||
|
||
job_id = '25057303/' | ||
pred, label = load_vel_data(f'test_im/temp/{job_id}') | ||
|
||
plt_temp(pred.temp, label.temp, args.path, 'model') | ||
|
||
subprocess.call( | ||
f'ffmpeg -y -framerate 25 -pattern_type glob -i "{args.path}/*.png" output.mp4', | ||
shell=True) | ||
|
||
def temp_cmap(): | ||
temp_ranges = [0.0, 0.02, 0.04, 0.06, 0.08, 0.1, 0.134, 0.167, | ||
0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0] | ||
color_codes = ['#0000FF', '#0443FF', '#0E7AFF', '#16B4FF', '#1FF1FF', '#21FFD3', | ||
'#22FF9B', '#22FF67', '#22FF15', '#29FF06', '#45FF07', '#6DFF08', | ||
'#9EFF09', '#D4FF0A', '#FEF30A', '#FEB709', '#FD7D08', '#FC4908', | ||
'#FC1407', '#FB0007'] | ||
colors = list(zip(temp_ranges, color_codes)) | ||
cmap = LinearSegmentedColormap.from_list('temperature_colormap', colors) | ||
return cmap | ||
|
||
def fft(x): | ||
x_fft = sfft.fft2(x) | ||
x_shift = np.abs(sfft.fftshift(x_fft)) | ||
return x_shift | ||
|
||
def mag(velx, vely): | ||
return np.sqrt(velx**2 + vely**2) | ||
|
||
def plt_vel(pred, label, path, model_name): | ||
plt.rc("font", family="serif", size=16, weight="bold") | ||
plt.rc("axes", labelweight="bold") | ||
|
||
label_mag = mag(label.velx, label.vely) | ||
pred_mag = mag(pred.velx, pred.vely) | ||
mag_vmax = abs(pred_mag[:50]).max() | ||
print(label_mag.max(), pred_mag.max()) | ||
|
||
frames = min(pred.temp.shape[0], 100) | ||
for i in range(frames): | ||
i_str = str(i).zfill(3) | ||
f, ax = plt.subplots(2, 2, layout='constrained') | ||
|
||
#x_vmax, x_vmin = label.velx.max(), label.velx.min() | ||
#y_vmax, y_vmin = label.vely.max(), label.vely.min() | ||
|
||
cm_object = ax[0, 0].imshow(np.flipud(label.temp[i]), vmin=0, vmax=1, cmap=temp_cmap()) | ||
#ax[1, 0].imshow(np.flipud(label.velx[i]), vmin=x_vmin, vmax=x_vmax, cmap='jet') | ||
#ax[2, 0].imshow(np.flipud(label.vely[i]), vmin=y_vmin, vmax=y_vmax, cmap='jet') | ||
#ax[1, 0].imshow(np.flipud(label_mag[i]), vmin=0, vmax=mag_vmax, cmap='jet') | ||
|
||
ax[0, 1].imshow(np.flipud(np.nan_to_num(pred.temp[i])), vmin=0, vmax=1, cmap=temp_cmap()) | ||
#ax[1, 1].imshow(np.flipud(pred.velx[i]), vmin=x_vmin, vmax=x_vmax, cmap='jet') | ||
#ax[2, 1].imshow(np.flipud(pred.vely[i]), vmin=y_vmin, vmax=x_vmax, cmap='jet') | ||
#ax[1, 1].imshow(np.flipud(pred_mag[i]), vmin=0, vmax=mag_vmax, cmap='jet') | ||
|
||
ax[0, 0].axis('off') | ||
ax[1, 0].axis('off') | ||
ax[0, 1].axis('off') | ||
ax[1, 1].axis('off') | ||
|
||
#ax[0, 2].imshow(np.flipud(fft(label.temp[i]))) | ||
#ax[1, 2].imshow(np.flipud(fft(label.velx[i]))) | ||
#ax[2, 2].imshow(np.flipud(fft(label.vely[i]))) | ||
#ax[3, 2].imshow(np.flipud(fft(label_mag))) | ||
|
||
#ax[0, 3].imshow(np.flipud(fft(pred.temp[i]))) | ||
#ax[1, 3].imshow(np.flipud(fft(pred.velx[i]))) | ||
#ax[2, 3].imshow(np.flipud(fft(pred.vely[i]))) | ||
#ax[3, 3].imshow(np.flipud(fft(pred_mag))) | ||
|
||
im_path = Path(path) | ||
im_path.mkdir(parents=True, exist_ok=True) | ||
plt.savefig(f'{str(im_path)}/{i_str}.png', | ||
dpi=200, | ||
bbox_inches='tight', | ||
transparent=True) | ||
plt.close() | ||
|
||
|
||
def plt_temp(temps, labels, path, model_name): | ||
print(temps.min(), temps.max(), | ||
labels.min(), labels.max()) | ||
|
||
plt.rc("font", family="serif", size=16, weight="bold") | ||
plt.rc("axes", labelweight="bold") | ||
for i in range(len(temps)): | ||
i_str = str(i).zfill(3) | ||
|
||
def plt_temp_arr(f, ax, arr, title): | ||
cm_object = ax.imshow(arr, vmin=0, vmax=1, cmap=temp_cmap()) | ||
#ax.set_title(title) | ||
ax.axis('off') | ||
return cm_object | ||
|
||
temp = temps[i] | ||
label = labels[i] | ||
f, axarr = plt.subplots(2, 3, layout="constrained") | ||
cm_object = plt_temp_arr(f, axarr[0, 0], np.flipud(label), 'Ground Truth') | ||
cm_object = plt_temp_arr(f, axarr[0, 1], np.flipud(temp), model_name) | ||
|
||
err = np.abs(temp - label) | ||
cm_object = plt_temp_arr(f, axarr[0, 2], np.flipud(err), 'Absolute Error') | ||
f.tight_layout() | ||
f.colorbar(cm_object, | ||
ax=axarr.ravel().tolist(), | ||
ticks=[0, 0.2, 0.6, 0.9], | ||
fraction=0.04, | ||
pad=0.02) | ||
f.set_size_inches(w=6, h=3) | ||
|
||
label_h = fft(label) | ||
temp_h = fft(temp) | ||
err_h = np.abs(label_h - temp_h) | ||
|
||
axarr[1, 0].imshow(np.flipud(label_h)) | ||
axarr[1, 1].imshow(np.flipud(temp_h)) | ||
axarr[1, 2].imshow(np.flipud(err_h)) | ||
|
||
im_path = Path(path) | ||
im_path.mkdir(parents=True, exist_ok=True) | ||
plt.savefig(f'{str(im_path)}/{i_str}.png', | ||
dpi=600, | ||
bbox_inches='tight', | ||
transparent=True) | ||
plt.close() | ||
|
||
if __name__ == '__main__': | ||
main() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,70 +1,165 @@ | ||
|
||
import argparse | ||
import torch | ||
import matplotlib.pyplot as plt | ||
from matplotlib.colors import LinearSegmentedColormap, BoundaryNorm | ||
from matplotlib.gridspec import GridSpec | ||
import numpy as np | ||
import os | ||
from pathlib import Path | ||
import subprocess | ||
import scipy.fft as sfft | ||
from dataclasses import dataclass | ||
|
||
def parse_args(): | ||
parser = argparse.ArgumentParser() | ||
parser.add_argument('--path', required=True, type=str, | ||
help='Path to directory with model and sim output.pt files') | ||
return parser.parse_args() | ||
|
||
@dataclass | ||
class BoilingData: | ||
temp: torch.Tensor | ||
velx: torch.Tensor | ||
vely: torch.Tensor | ||
|
||
def load_vel_data(temp_path, vel_path): | ||
pred = BoilingData( | ||
torch.load(f'{temp_path}/model_ouput.pt').numpy(), | ||
torch.load(f'{vel_path}/velx_output.pt').numpy(), | ||
torch.load(f'{vel_path}/vely_output.pt').numpy()) | ||
label = BoilingData( | ||
torch.load(f'{temp_path}/sim_ouput.pt').numpy(), | ||
torch.load(f'{vel_path}/velx_label.pt').numpy(), | ||
torch.load(f'{vel_path}/vely_label.pt').numpy()) | ||
return pred, label | ||
|
||
def main(): | ||
args = parse_args() | ||
|
||
job_id = '25042240/' | ||
pred, label = load_vel_data(f'test_im/temp/{job_id}', f'test_im/vel/{job_id}') | ||
|
||
plt_vel(pred, label, args.path, 'model') | ||
|
||
subprocess.call( | ||
f'ffmpeg -y -framerate 25 -pattern_type glob -i "{args.path}/*.png" output.mp4', | ||
shell=True) | ||
|
||
def temp_cmap(): | ||
temp_ranges = [0.0, 0.02, 0.04, 0.06, 0.08, 0.1, 0.134, 0.167, | ||
0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0] | ||
color_codes = ['#0000FF', '#0443FF', '#0E7AFF', '#16B4FF', '#1FF1FF', '#21FFD3', | ||
'#22FF9B', '#22FF67', '#22FF15', '#29FF06', '#45FF07', '#6DFF08', | ||
'#9EFF09', '#D4FF0A', '#FEF30A', '#FEB709', '#FD7D08', '#FC4908', | ||
'#FC1407', '#FB0007'] | ||
colors = list(zip(temp_ranges, color_codes)) | ||
cmap = LinearSegmentedColormap.from_list('temperature_colormap', colors) | ||
return cmap | ||
|
||
def fft(x): | ||
x_fft = sfft.fft2(x) | ||
x_shift = np.abs(sfft.fftshift(x_fft)) | ||
return x_shift | ||
|
||
def mag(velx, vely): | ||
return np.sqrt(velx**2 + vely**2) | ||
|
||
def plt_vel(pred, label, path, model_name): | ||
plt.rc("font", family="serif", size=16, weight="bold") | ||
plt.rc("axes", labelweight="bold") | ||
|
||
label_mag = mag(label.velx, label.vely) | ||
pred_mag = mag(pred.velx, pred.vely) | ||
mag_vmax = abs(pred_mag[:50]).max() | ||
print(label_mag.max(), pred_mag.max()) | ||
|
||
frames = min(pred.temp.shape[0], 100) | ||
for i in range(frames): | ||
i_str = str(i).zfill(3) | ||
f, ax = plt.subplots(2, 2, layout='constrained') | ||
|
||
x_vmax, x_vmin = label.velx.max(), label.velx.min() | ||
y_vmax, y_vmin = label.vely.max(), label.vely.min() | ||
|
||
cm_object = ax[0, 0].imshow(np.flipud(label.temp[i]), vmin=0, vmax=1, cmap=temp_cmap()) | ||
#ax[1, 0].imshow(np.flipud(label.velx[i]), vmin=x_vmin, vmax=x_vmax, cmap='jet') | ||
#ax[2, 0].imshow(np.flipud(label.vely[i]), vmin=y_vmin, vmax=y_vmax, cmap='jet') | ||
ax[1, 0].imshow(np.flipud(label_mag[i]), vmin=0, vmax=mag_vmax, cmap='jet') | ||
|
||
ax[0, 1].imshow(np.flipud(np.nan_to_num(pred.temp[i])), vmin=0, vmax=1, cmap=temp_cmap()) | ||
#ax[1, 1].imshow(np.flipud(pred.velx[i]), vmin=x_vmin, vmax=x_vmax, cmap='jet') | ||
#ax[2, 1].imshow(np.flipud(pred.vely[i]), vmin=y_vmin, vmax=x_vmax, cmap='jet') | ||
ax[1, 1].imshow(np.flipud(pred_mag[i]), vmin=0, vmax=mag_vmax, cmap='jet') | ||
|
||
ax[0, 0].axis('off') | ||
ax[1, 0].axis('off') | ||
ax[0, 1].axis('off') | ||
ax[1, 1].axis('off') | ||
|
||
#ax[0, 2].imshow(np.flipud(fft(label.temp[i]))) | ||
#ax[1, 2].imshow(np.flipud(fft(label.velx[i]))) | ||
#ax[2, 2].imshow(np.flipud(fft(label.vely[i]))) | ||
#ax[3, 2].imshow(np.flipud(fft(label_mag))) | ||
|
||
#ax[0, 3].imshow(np.flipud(fft(pred.temp[i]))) | ||
#ax[1, 3].imshow(np.flipud(fft(pred.velx[i]))) | ||
#ax[2, 3].imshow(np.flipud(fft(pred.vely[i]))) | ||
#ax[3, 3].imshow(np.flipud(fft(pred_mag))) | ||
|
||
im_path = Path(path) | ||
im_path.mkdir(parents=True, exist_ok=True) | ||
plt.savefig(f'{str(im_path)}/{i_str}.png', | ||
dpi=200, | ||
bbox_inches='tight', | ||
transparent=True) | ||
plt.close() | ||
|
||
|
||
def plt_temp(temps, labels, path, model_name): | ||
print(temps.min(), temps.max(), | ||
labels.min(), labels.max()) | ||
|
||
plt.rc("font", family="serif", size=16, weight="bold") | ||
plt.rc("axes", labelweight="bold") | ||
for i in range(len(temps)): | ||
i_str = str(i).zfill(3) | ||
|
||
def plt_temp_arr(f, ax, arr, title): | ||
cm_object = ax.imshow(arr, vmin=0, vmax=1, cmap=temp_cmap()) | ||
#ax.set_title(title) | ||
ax.axis('off') | ||
return cm_object | ||
|
||
temp = temps[i].numpy() | ||
label = labels[i].numpy() | ||
f, axarr = plt.subplots(2, 3, layout="constrained") | ||
cm_object = plt_temp_arr(f, axarr[0, 0], np.flipud(label), 'Ground Truth') | ||
cm_object = plt_temp_arr(f, axarr[0, 1], np.flipud(temp), model_name) | ||
|
||
err = np.abs(temp - label) | ||
cm_object = plt_temp_arr(f, axarr[0, 2], np.flipud(err), 'Absolute Error') | ||
f.tight_layout() | ||
f.colorbar(cm_object, | ||
ax=axarr.ravel().tolist(), | ||
ticks=[0, 0.2, 0.6, 0.9], | ||
fraction=0.04, | ||
pad=0.02) | ||
f.set_size_inches(w=6, h=3) | ||
|
||
label_h = fft(label) | ||
temp_h = fft(temp) | ||
err_h = np.abs(label_h - temp_h) | ||
|
||
axarr[1, 0].imshow(np.flipud(label_h)) | ||
axarr[1, 1].imshow(np.flipud(temp_h)) | ||
axarr[1, 2].imshow(np.flipud(err_h)) | ||
|
||
im_path = Path(path) | ||
im_path.mkdir(parents=True, exist_ok=True) | ||
plt.savefig(f'{str(im_path)}/{i_str}.png', | ||
dpi=600, | ||
bbox_inches='tight', | ||
transparent=True) | ||
plt.close() | ||
|
||
velx_pred = torch.load('scripts/data/vel_unet_mod_push/velx_output.pt').numpy() | ||
vely_pred = torch.load('scripts/data/vel_unet_mod_push/vely_output.pt').numpy() | ||
|
||
velx_label = torch.load('scripts/data/vel_unet_mod_push/velx_label.pt').numpy() | ||
vely_label = torch.load('scripts/data/vel_unet_mod_push/vely_label.pt').numpy() | ||
|
||
w = velx_pred.shape[1] | ||
d = 6 | ||
y, x = np.mgrid[d:w-d,d:w-d] | ||
print(x, y) | ||
|
||
temp_ranges = [0.0, 0.1, 0.4, 0.75, 1.0] | ||
color_codes = ['black', 'purple', 'orange', 'yellow', 'white'] | ||
colors = list(zip(temp_ranges, color_codes)) | ||
cmap = LinearSegmentedColormap.from_list('vel_colormap', colors) | ||
|
||
steps = list(range(1, velx_label.shape[0] // 2 + 1, 20)) | ||
|
||
plt.rc("font", family="serif", size=18, weight="bold") | ||
plt.rc("axes", labelweight="bold") | ||
|
||
fig, ax = plt.subplots(3, len(steps), figsize=(14.5, 7)) | ||
|
||
mag_label = np.sqrt(velx_label**2 + vely_label**2) | ||
mag_pred = np.sqrt(velx_pred**2 + vely_pred**2) | ||
mag_error = np.abs(mag_label - mag_pred) | ||
|
||
vmin, vmax = 0, max(mag_label[steps].max(), mag_pred[steps].max()) | ||
|
||
for idx, t in enumerate(steps): | ||
label_im = ax[0][idx].imshow(np.flipud(mag_label[t]), cmap=cmap, vmin=vmin, vmax=vmax) | ||
ax[0][idx].streamplot(x, y, | ||
velx_label[t,d:-d,d:-d], | ||
vely_label[t,d:-d,d:-d], | ||
linewidth=0.5, | ||
density=0.75, | ||
color='w', | ||
arrowstyle='fancy') | ||
ax[1][idx].imshow(np.flipud(mag_pred[t]), cmap=cmap, vmin=vmin, vmax=vmax) | ||
ax[1][idx].streamplot(x, y, | ||
velx_pred[t,d:-d,d:-d], | ||
vely_pred[t,d:-d,d:-d], | ||
linewidth=0.5, | ||
density=0.75, | ||
color='w', | ||
arrowstyle='fancy') | ||
error_im = ax[2][idx].imshow(np.flipud(mag_error[t]), cmap=cmap, vmin=vmin, vmax=mag_error[steps].max()) | ||
for i in range(3): | ||
ax[i][idx].set_xticks([]) | ||
ax[i][idx].set_yticks([]) | ||
ax[0][0].set_ylabel('Ground Truth') | ||
ax[1][0].set_ylabel('Prediction') | ||
ax[2][0].set_ylabel('Abs. Error') | ||
|
||
for i in range(len(steps)): | ||
ax[0,i].set_title(f'Step {i*20}') | ||
|
||
plt.tight_layout() | ||
fig.subplots_adjust(wspace=0, hspace=0) | ||
fig.colorbar(label_im, ax=ax[:2].ravel().tolist(), pad=0.005, shrink=0.5) | ||
fig.colorbar(error_im, ax=ax[2].ravel().tolist(), pad=0.005) | ||
plt.savefig(f'vel.pdf', dpi=500, bbox_inches='tight') | ||
plt.close() | ||
if __name__ == '__main__': | ||
main() |