Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

SP3 clock normalisation & Helmert transformation #57

Open
wants to merge 14 commits into
base: main
Choose a base branch
from
Open
44 changes: 32 additions & 12 deletions gnssanalysis/gn_diffaux.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
import logging as _logging
from pathlib import Path as _Path
from typing import Union
from typing import Literal, Union

import numpy as _np
import pandas as _pd
Expand Down Expand Up @@ -324,8 +324,8 @@ def compare_clk(
:return _pd.DataFrame: clk differences in the same units as input clk dfs (usually seconds)
"""

clk_a = _gn_io.clk.get_AS_entries(clk_a)
clk_b = _gn_io.clk.get_AS_entries(clk_b)
clk_a = _gn_io.clk.get_sv_clocks(clk_a)
clk_b = _gn_io.clk.get_sv_clocks(clk_b)

if not isinstance(norm_types, list): # need list for 'sv' to be correctly converted to array of SVs to use for norm
norm_types = list(norm_types)
Expand Down Expand Up @@ -708,32 +708,46 @@ def format_index(
def sp3_difference(
base_sp3_file: _Path,
test_sp3_file: _Path,
svs: list[str],
orb_hlm_mode: Literal[None, "ECF", "ECI"] = None,
epochwise_hlm: bool = False,
clk_norm_types: list = [],
) -> _pd.DataFrame:
"""
Compare two SP3 files to calculate orbit and clock differences. The orbit differences will be represented
in both X/Y/Z ECEF frame and R/A/C orbit frame, and the clock differences will NOT be normalised.

:param _Path base_sp3_file: Path of the baseline SP3 file
:param _Path test_sp3_file: Path of the test SP3 file
:param list[str] svs: List of satellites to process
:param str orb_hlm_mode: Helmert transformation to apply to orbits. Can be None, "ECF", or "ECI"
:param bool epochwise_hlm: Epochwise Helmert transformation
:param list clk_norm_types: Normalizations to apply to clocks. Available options include 'epoch', 'daily', 'sv',
any satellite PRN, or any combination of them, defaults to empty list
:return _pd.DataFrame: The Pandas DataFrame containing orbit and clock differences
"""
base_sp3_df = _gn_io.sp3.read_sp3(str(base_sp3_file))
mask = base_sp3_df.index.get_level_values('PRN').isin(svs)
base_sp3_df = base_sp3_df[mask]

test_sp3_df = _gn_io.sp3.read_sp3(str(test_sp3_file))
mask = test_sp3_df.index.get_level_values('PRN').isin(svs)
test_sp3_df = test_sp3_df[mask]

common_indices = base_sp3_df.index.intersection(test_sp3_df.index)
diff_est_df = test_sp3_df.loc[common_indices, "EST"] - base_sp3_df.loc[common_indices, "EST"]

diff_clk_df = diff_est_df["CLK"].to_frame(name="CLK") * 1e3 # TODO: normalise clocks
diff_xyz_df = diff_est_df.drop(columns=["CLK"]) * 1e3
diff_rac_df = _gn_io.sp3.diff_sp3_rac(base_sp3_df, test_sp3_df, hlm_mode=None) # TODO: hlm_mode

diff_rac_df = _gn_io.sp3.diff_sp3_rac(base_sp3_df, test_sp3_df, hlm_mode=orb_hlm_mode, epochwise_hlm=epochwise_hlm) # TODO Eugene: compare orbits by constellation
diff_rac_df.columns = diff_rac_df.columns.droplevel(0)

diff_rac_df = diff_rac_df * 1e3

diff_clk_df = compare_clk(test_sp3_df, base_sp3_df, norm_types=clk_norm_types) # TODO Eugene: compare clocks by constellation
diff_clk_df = diff_clk_df.stack(dropna=False).to_frame(name="Clock") * 1e3

diff_sp3_df = diff_xyz_df.join(diff_rac_df)
diff_sp3_df["3D-Total"] = diff_xyz_df.pow(2).sum(axis=1, min_count=3).pow(0.5)
diff_sp3_df["Clock"] = diff_clk_df
diff_sp3_df = diff_sp3_df.join(diff_clk_df)
diff_sp3_df["|Clock|"] = diff_clk_df.abs()

format_index(diff_sp3_df)
Expand All @@ -744,23 +758,29 @@ def sp3_difference(
def clk_difference(
base_clk_file: _Path,
test_clk_file: _Path,
norm_types: list = [],
svs: list[str],
clk_norm_types: list = [],
) -> _pd.DataFrame:
"""
Compare two CLK files to calculate clock differences with common mode removed (if specified)
based on the chosen normalisations.

:param _Path base_clk_file: Path of the baseline CLK file
:param _Path test_clk_file: Path of the test CLK file
:param norm_types list: Normalizations to apply. Available options include 'epoch', 'daily', 'sv',
:param list[str] svs: List of satellites to process
:param list clk_norm_types: Normalizations to apply to clocks. Available options include 'epoch', 'daily', 'sv',
any satellite PRN, or any combination of them, defaults to empty list
:return _pd.DataFrame: The Pandas DataFrame containing clock differences
"""
base_clk_df = _gn_io.clk.read_clk(base_clk_file)
test_clk_df = _gn_io.clk.read_clk(test_clk_file)
mask = base_clk_df.index.get_level_values('CODE').isin(svs)
base_clk_df = base_clk_df[mask]

diff_clk_df = compare_clk(test_clk_df, base_clk_df, norm_types=norm_types)
test_clk_df = _gn_io.clk.read_clk(test_clk_file)
mask = test_clk_df.index.get_level_values('CODE').isin(svs)
test_clk_df = test_clk_df[mask]

diff_clk_df = compare_clk(test_clk_df, base_clk_df, norm_types=clk_norm_types) # TODO Eugene: compare clocks by constellation
diff_clk_df = diff_clk_df.stack(dropna=False).to_frame(name="Clock") * 1e9
diff_clk_df["|Clock|"] = diff_clk_df.abs()

Expand Down
21 changes: 16 additions & 5 deletions gnssanalysis/gn_io/clk.py
Original file line number Diff line number Diff line change
Expand Up @@ -70,11 +70,22 @@ def read_clk(clk_path):
return clk_df


def get_AS_entries(clk_df: _pd.DataFrame) -> _pd.Series:
"""fastest method to grab a specific category!, same as clk_df.EST.loc['AS'] but >6 times faster"""
AS_cat_code = clk_df.index.levels[0].categories.get_loc("AS")
mask = clk_df.index.codes[0] == AS_cat_code
return _pd.Series(data=clk_df.values[:, 0][mask], index=clk_df.index.droplevel(0)[mask])
def get_sv_clocks(clk_df: _pd.DataFrame) -> _pd.Series:
"""Retrieve satellite clocks from a CLK or SP3 dataframe

:param _pd.DataFrame clk_df: CLK or SP3 dataframe where to retreive satellite clocks from
:raises IndexError: Raise error if the dataframe is not indexed correctly
:return _pd.Series: Retrieved satellite clocks
"""
if clk_df.index.names == ['A', 'J2000', 'CODE']:
# fastest method to grab a specific category!, same as clk_df.EST.loc['AS'] but >6 times faster
AS_cat_code = clk_df.index.levels[0].categories.get_loc("AS")
mask = clk_df.index.codes[0] == AS_cat_code
return _pd.Series(data=clk_df.values[:, 0][mask], index=clk_df.index.droplevel(0)[mask])
elif clk_df.index.names == ['J2000', 'PRN']:
return _pd.Series(data=clk_df[("EST", "CLK")].values, index=clk_df.index)
else:
raise IndexError("Incorrect index names of dataframe")


def rm_epoch_gnss_bias(clk_df_unst: _pd.DataFrame):
Expand Down
44 changes: 30 additions & 14 deletions gnssanalysis/gn_io/sp3.py
Original file line number Diff line number Diff line change
Expand Up @@ -214,7 +214,6 @@ def _process_sp3_block(
) -> _pd.DataFrame:
"""Process a single block of SP3 data.


:param str date: The date of the SP3 data block.
:param str data: The SP3 data block.
:param List[int] widths: The widths of the columns in the SP3 data block.
Expand Down Expand Up @@ -251,7 +250,6 @@ def read_sp3(
) -> _pd.DataFrame:
"""Reads an SP3 file and returns the data as a pandas DataFrame.


:param str sp3_path: The path to the SP3 file.
:param bool pOnly: If True, only P* values (positions) are included in the DataFrame. Defaults to True.
:param bool nodata_to_nan: If True, converts 0.000000 (indicating nodata) to NaN in the SP3 POS column
Expand Down Expand Up @@ -474,7 +472,6 @@ def getVelPoly(sp3Df: _pd.DataFrame, deg: int = 35) -> _pd.DataFrame:
:param DataFrame sp3Df: A pandas DataFrame containing the sp3 data.
:param int deg: Degree of the polynomial fit. Default is 35.
:return DataFrame: A pandas DataFrame with the interpolated velocities added as a new column.

"""
est = sp3Df.unstack(1).EST[["X", "Y", "Z"]]
x = est.index.get_level_values("J2000").values
Expand Down Expand Up @@ -580,7 +577,6 @@ def gen_sp3_content(
Organises, formats (including nodata values), then writes out SP3 content to a buffer if provided, or returns
it otherwise.

Args:
:param pandas.DataFrame sp3_df: The DataFrame containing the SP3 data.
:param bool sort_outputs: Whether to sort the outputs. Defaults to False.
:param io.TextIOBase buf: The buffer to write the SP3 content to. Defaults to None.
Expand Down Expand Up @@ -792,7 +788,6 @@ def sp3merge(
:param List[str] sp3paths: The list of paths to the sp3 files.
:param Union[List[str], None] clkpaths: The list of paths to the clk files, or None if no clk files are provided.
:param bool nodata_to_nan: Flag indicating whether to convert nodata values to NaN.

:return pd.DataFrame: The merged sp3 DataFrame.
"""
sp3_dfs = [read_sp3(sp3_file, nodata_to_nan=nodata_to_nan) for sp3_file in sp3paths]
Expand All @@ -809,17 +804,36 @@ def sp3merge(
return merged_sp3


def sp3_hlm_trans(a: _pd.DataFrame, b: _pd.DataFrame) -> tuple[_pd.DataFrame, list]:
def hlm_trans(pt1: _np.ndarray, pt2: _np.ndarray) -> tuple[_np.ndarray, list]:
"""
Rotates a set of points pt1 into pt2.

:param _np.ndarray pt1: The first set of points.
:param _np.ndarray pt2: The second set of points.
:return tuple[_np.ndarray, list]: A tuple containing the output array and the HLM array with applied computed parameters and residuals.
"""
Rotates sp3_b into sp3_a.
hlm = _gn_transform.get_helmert7(pt1, pt2)
xyz_out = _gn_transform.transform7(xyz_in=pt2, hlm_params=hlm[0])
return xyz_out, hlm


:param DataFrame a: The sp3_a DataFrame.
:param DataFrame b : The sp3_b DataFrame.
def sp3_hlm_trans(a: _pd.DataFrame, b: _pd.DataFrame, epochwise: bool = False) -> tuple[_pd.DataFrame, list]:
"""
Rotates sp3_b into sp3_a.

:returntuple[pandas.DataFrame, list]: A tuple containing the updated sp3_b DataFrame and the HLM array with applied computed parameters and residuals.
:param DataFrame a: The sp3_a DataFrame.
:param DataFrame b : The sp3_b DataFrame.
:param bool epochwise: Epochwise HLM transformation.
:return tuple[pandas.DataFrame, list]: A tuple containing the updated sp3_b DataFrame and the HLM array with applied computed parameters and residuals.
"""
hlm = _gn_transform.get_helmert7(pt1=a.EST[["X", "Y", "Z"]].values, pt2=b.EST[["X", "Y", "Z"]].values)
b.iloc[:, :3] = _gn_transform.transform7(xyz_in=b.EST[["X", "Y", "Z"]].values, hlm_params=hlm[0])
hlm = []
if epochwise:
for epoch in b.index.get_level_values("J2000").unique():
b.loc[epoch, [("EST", "X"), ("EST", "Y"), ("EST", "Z")]], hlm_epoch = hlm_trans(a.loc[epoch].EST[["X", "Y", "Z"]].values, b.loc[epoch].EST[["X", "Y", "Z"]].values)
hlm.append(hlm_epoch)
else:
b.iloc[:, :3], hlm = hlm_trans(a.EST[["X", "Y", "Z"]].values, b.EST[["X", "Y", "Z"]].values)

return b, hlm


Expand All @@ -828,6 +842,7 @@ def diff_sp3_rac(
sp3_baseline: _pd.DataFrame,
sp3_test: _pd.DataFrame,
hlm_mode: Literal[None, "ECF", "ECI"] = None,
epochwise_hlm: bool = False,
use_cubic_spline: bool = True,
) -> _pd.DataFrame:
"""
Expand All @@ -836,6 +851,7 @@ def diff_sp3_rac(
:param DataFrame sp3_baseline: The baseline sp3 DataFrame.
:param DataFrame sp3_test: The test sp3 DataFrame.
:param string hlm_mode: The mode for HLM transformation. Can be None, "ECF", or "ECI".
:param bool epochwise_hlm: Epochwise HLM transformation.
:param bool use_cubic_spline: Flag indicating whether to use cubic spline for velocity computation.
:return: The DataFrame containing the difference in RAC coordinates.
"""
Expand All @@ -852,11 +868,11 @@ def diff_sp3_rac(

hlm = None # init hlm var
if hlm_mode == "ECF":
sp3_test, hlm = sp3_hlm_trans(sp3_baseline, sp3_test)
sp3_test, hlm = sp3_hlm_trans(sp3_baseline, sp3_test, epochwise_hlm)
sp3_baseline_eci = _gn_transform.ecef2eci(sp3_baseline)
sp3_test_eci = _gn_transform.ecef2eci(sp3_test)
if hlm_mode == "ECI":
sp3_test_eci, hlm = sp3_hlm_trans(sp3_baseline_eci, sp3_test_eci)
sp3_test_eci, hlm = sp3_hlm_trans(sp3_baseline_eci, sp3_test_eci, epochwise_hlm)

diff_eci = sp3_test_eci - sp3_baseline_eci

Expand Down
51 changes: 37 additions & 14 deletions gnssanalysis/gn_transform.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,8 +8,23 @@
from . import gn_const as _gn_const


def gen_helm_aux(pt1, pt2):
"""aux function for helmert values inversion."""
def gen_helm_aux(
pt1: _np.ndarray,
pt2: _np.ndarray,
dropna: bool = True,
) -> Tuple[_np.ndarray, _np.ndarray]:
"""Aux function for helmert values inversion.

:param _np.ndarray pt1: The first set of points.
:param _np.ndarray pt2: The second set of points.
:param bool dropna: Whether to drop NaN values in input data, defaults to True.
:return Tuple[_np.ndarray, _np.ndarray]: A tuple containing the design matrix and right hand side of the equation for least square estimation.
"""
if dropna:
mask = ~_np.isnan(pt1).any(axis=1) & ~_np.isnan(pt2).any(axis=1)
pt1 = pt1[mask]
pt2 = pt2[mask]

pt1 = pt1.astype(float)
pt2 = pt2.astype(float)
n_points = pt1.shape[0]
Expand All @@ -32,23 +47,27 @@ def gen_helm_aux(pt1, pt2):
return A, rhs


def get_helmert7(pt1: _np.ndarray, pt2: _np.ndarray, scale_in_ppm: bool = True) -> Tuple[_np.ndarray, _np.ndarray]:
def get_helmert7(
pt1: _np.ndarray,
pt2: _np.ndarray,
scale_in_ppm: bool = True,
dropna: bool = True,
) -> list:
"""Inversion of 7 Helmert parameters between 2 sets of points.

:param numpy.ndarray pt1: The first set of points.
:param numpy.ndarray pt2: The second set of points.
:param bool scale_in_ppm: Whether the scale parameter is in parts per million (ppm).

:returns uple[np.ndarray, np.ndarray]: A tuple containing the Helmert parameters and the residuals.

:param bool dropna: Whether to drop NaN values in input data, defaults to True.
:returns list: A list containing the Helmert parameters and the residuals.
"""
A, rhs = gen_helm_aux(pt1, pt2)
A, rhs = gen_helm_aux(pt1, pt2, dropna)
sol = list(_np.linalg.lstsq(A, rhs, rcond=-1)) # parameters
res = rhs - A @ sol[0] # computing residuals for pt2
sol.append(res.reshape(-1, 3)) # appending residuals
sol[0] = sol[0].flatten() * -1.0 # flattening the HLM params arr to [Tx, Ty, Tz, Rx, Ry, Rz, Scale/mu]
if scale_in_ppm:
sol[0][-1] *= 1e6 # scale in ppm
res = rhs - A @ sol[0] # computing residuals for pt2
sol.append(res.reshape(-1, 3)) # appending residuals
return sol


Expand All @@ -63,14 +82,18 @@ def gen_rot_matrix(v):
return mat + _np.eye(3)


def transform7(xyz_in: _np.ndarray, hlm_params: _np.ndarray, scale_in_ppm: bool = True) -> _np.ndarray:
def transform7(
xyz_in: _np.ndarray,
hlm_params: _np.ndarray,
scale_in_ppm: bool = True,
) -> _np.ndarray:
"""
Transformation of xyz vector with 7 helmert parameters.

:param xyz_in: The input xyz vector.
:param hlm_params: The 7 helmert parameters: [Tx, Ty, Tz, Rx, Ry, Rz, Scale].
:param scale_in_ppm: Whether the scale parameter is in parts per million (ppm).
:return: The transformed xyz vector.
:param _np.ndarray xyz_in: The input xyz vector.
:param _np.ndarray hlm_params: The 7 helmert parameters: [Tx, Ty, Tz, Rx, Ry, Rz, Scale].
:param bool scale_in_ppm: Whether the scale parameter is in parts per million (ppm).
:return _np.ndarray: The transformed xyz vector.
"""
assert hlm_params.size == 7, "There must be exactly seven parameters"

Expand Down
Loading