Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Major refactor of statistics functions #37

Merged
merged 6 commits into from
Dec 20, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
222 changes: 128 additions & 94 deletions docs/notebooks/Tide_statistics.ipynb

Large diffs are not rendered by default.

13 changes: 10 additions & 3 deletions eo_tides/eo.py
Original file line number Diff line number Diff line change
Expand Up @@ -101,6 +101,7 @@ def _pixel_tides_resample(
resample_method="bilinear",
dask_chunks=None,
dask_compute=True,
name="tide_height",
):
"""Resamples low resolution tides modelled by `pixel_tides` into the
geobox (e.g. spatial resolution and extent) of the original higher
Expand All @@ -125,6 +126,8 @@ def _pixel_tides_resample(
Whether to compute results of the resampling step using Dask.
If False, this will return `tides_highres` as a lazy loaded
Dask-enabled array.
name : str, optional
The name used for the output array. Defaults to "tide_height".

Returns
-------
Expand All @@ -145,7 +148,11 @@ def _pixel_tides_resample(
how=gbox,
chunks=dask_chunks,
resampling=resample_method,
).rename("tide_height")
)

# Set output name
if name is not None:
tides_highres = tides_highres.rename(name)

# Optionally process and load into memory with Dask
if dask_compute:
Expand Down Expand Up @@ -373,7 +380,7 @@ def pixel_tides(
`data` has a geographic CRS (e.g. degree units).
resample_method : str, optional
If resampling is requested (see `resample` above), use this
resampling method when converting from low resolution to high
resampling method when resampling from low resolution to high
resolution pixels. Defaults to "bilinear"; valid options include
"nearest", "cubic", "min", "max", "average" etc.
dask_chunks : tuple of float, optional
Expand All @@ -385,7 +392,7 @@ def pixel_tides(
`(2048, 2048)`.
dask_compute : bool, optional
Whether to compute results of the resampling step using Dask.
If False, `tides_highres` will be returned as a Dask array.
If False, `tides_highres` will be returned as a Dask-enabled array.
**model_tides_kwargs :
Optional parameters passed to the `eo_tides.model.model_tides`
function. Important parameters include `cutoff` (used to
Expand Down
8 changes: 5 additions & 3 deletions eo_tides/model.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,7 +21,7 @@
import pyTMD
from tqdm import tqdm

from .utils import DatetimeLike, _set_directory, _standardise_models, _standardise_time, idw, list_models
from .utils import DatetimeLike, _set_directory, _standardise_models, _standardise_time, idw


def _parallel_splits(
Expand Down Expand Up @@ -486,7 +486,7 @@ def model_tides(
- "spline": scipy bivariate spline interpolation
- "bilinear": quick bilinear interpolation
extrapolate : bool, optional
Whether to extrapolate tides for x and y coordinates outside of
Whether to extrapolate tides into x and y coordinates outside of
the valid tide modelling domain using nearest-neighbor.
cutoff : float, optional
Extrapolation cutoff in kilometers. The default is None, which
Expand Down Expand Up @@ -544,7 +544,7 @@ def model_tides(
time = _standardise_time(time)

# Validate input arguments
assert time is not None, "Times for modelling tides muyst be provided via `time`."
assert time is not None, "Times for modelling tides must be provided via `time`."
assert method in ("bilinear", "spline", "linear", "nearest")
assert output_units in (
"m",
Expand All @@ -555,6 +555,8 @@ def model_tides(
"long",
"wide",
), "Output format must be either 'long' or 'wide'."
assert np.issubdtype(x.dtype, np.number), "`x` must contain only valid numeric values, and must not be None."
assert np.issubdtype(y.dtype, np.number), "`y` must contain only valid numeric values, and must not be None.."
assert len(x) == len(y), "x and y must be the same length."
if mode == "one-to-one":
assert len(x) == len(time), (
Expand Down
Loading
Loading