Skip to content

Let's cluster similar research articles together to make it easier for health professionals to find relevant research articles, and responde to rapidly spreading COVID-19 promptly.

Notifications You must be signed in to change notification settings

GIRvB6162/COVID19-Literature-Clustering

 
 

Repository files navigation

COVID-19 Literature Clustering

Goal

Given a large amount of literature and rapidly spreading COVID-19, it is difficult for a scientist to keep up with the research community promptly. Can we cluster similar research articles together to make it easier for health professionals to find relevant research articles? Clustering can be used to create a tool to identify similar articles, given a target article. It can also reduce the number of articles one has to go through as one can focus on a cluster of articles.

https://maksimekin.github.io/COVID19-Literature-Clustering/plots/t-sne_covid-19_interactive.html

t-SNE Output Clustered For Visualization

Approach:

  1. Unsupervised Learning task, because we don't have labels for the articles
  2. Clustering and Dimensionality Reduction task
  3. See how well labels from K-Means classify
  4. Use N-Grams with Hash Vectorizer
  5. Use plain text with Tfidf
  6. Use K-Means for clustering
  7. Use t-SNE for dimensionality reduction
  8. Use PCA for dimensionality reduction
  9. There is no continuous flow of data, no need to adjust to changing data, and the data is small enough to fit in memmory: Batch Learning
  10. Altough, there is no continuous flow of data, our approach has to be scalable as there will be more literature later

Dataset Description

In response to the COVID-19 pandemic, the White House and a coalition of leading research groups have prepared the COVID-19 Open Research Dataset (CORD-19). CORD-19 is a resource of over 29,000 scholarly articles, including over 13,000 with full text, about COVID-19, SARS-CoV-2, and related coronaviruses. This freely available dataset is provided to the global research community to apply recent advances in natural language processing and other AI techniques to generate new insights in support of the ongoing fight against this infectious disease. There is a growing urgency for these approaches because of the rapid acceleration in new coronavirus literature, making it difficult for the medical research community to keep up.

Maps

Maps generated using Novel Corona Virus 2019 Dataset | Kaggle.

Citation/Sources

Dataset/Task: COVID-19 Open Research Dataset Challenge (CORD-19), An AI challenge with AI2, CZI, MSR, Georgetown, NIH & The White House COVID-19 Open Research Dataset Challenge (CORD-19) | Kaggle

Code for loading the dataset into DF(cite): Dataset Parsing Code | Kaggle, COVID EDA: Initial Exploration Tool

Clustering section of the project: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 2nd Edition, by Aurelien Geron (O'Reilly). Copyright 2019 Kiwisoft S.A.S, 978-1-492-03264-9

Call to Action to the Tech Community on New Machine Readable COVID-19 Dataset | White House, USA, March 16, 2020 Kaggle Submission: COVID-19 Literature Clustering | Kaggle

@inproceedings{Raff2020,
author = {Raff, Edward and Nicholas, Charles and McLean, Mark},
booktitle = {The Thirty-Fourth AAAI Conference on Artificial Intelligence},
title = {{A New Burrows Wheeler Transform Markov Distance}},
url = {http://arxiv.org/abs/1912.13046},
year = {2020}
}

About

Let's cluster similar research articles together to make it easier for health professionals to find relevant research articles, and responde to rapidly spreading COVID-19 promptly.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • HTML 52.5%
  • Jupyter Notebook 47.5%