-
Notifications
You must be signed in to change notification settings - Fork 1.6k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #5269 from FederatedAI/feature-1.11.5-stats
Feature 1.11.5 stats
- Loading branch information
Showing
15 changed files
with
543 additions
and
104 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
88 changes: 88 additions & 0 deletions
88
examples/pipeline/feature_imputation/pipeline-feature-imputation-designated-column.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,88 @@ | ||
# | ||
# Copyright 2019 The FATE Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# | ||
|
||
import argparse | ||
|
||
from pipeline.backend.pipeline import PipeLine | ||
from pipeline.component import DataTransform | ||
from pipeline.component import FeatureImputation | ||
from pipeline.component import Reader | ||
from pipeline.interface import Data | ||
from pipeline.utils.tools import load_job_config | ||
|
||
|
||
def main(config="../../config.yaml", namespace=""): | ||
# obtain config | ||
if isinstance(config, str): | ||
config = load_job_config(config) | ||
parties = config.parties | ||
guest = parties.guest[0] | ||
|
||
guest_train_data = {"name": "mocked_string_data", "namespace": f"experiment{namespace}"} | ||
|
||
pipeline = PipeLine().set_initiator(role='guest', party_id=guest).set_roles(guest=guest) | ||
|
||
reader_0 = Reader(name="reader_0") | ||
reader_0.get_party_instance(role='guest', party_id=guest).component_param(table=guest_train_data) | ||
|
||
data_transform_0 = DataTransform(name="data_transform_0", with_label=False, data_type='str', | ||
exclusive_data_type={'y': 'int'}) | ||
|
||
feature_imputation_0 = FeatureImputation(name="feature_imputation_0", | ||
missing_fill_method=None, | ||
col_missing_fill_method={'x0': 'designated', | ||
'x1': 'designated', | ||
'x2': 'mode', | ||
'x4': 'mode', | ||
'y': 'median'}, | ||
default_value='10', | ||
col_default_value={'x0': 'Z', 'x1': 'X'}, | ||
missing_impute=['A', 0]) | ||
|
||
pipeline.add_component(reader_0) | ||
pipeline.add_component(data_transform_0, data=Data(data=reader_0.output.data)) | ||
pipeline.add_component(feature_imputation_0, data=Data(data=data_transform_0.output.data)) | ||
pipeline.compile() | ||
|
||
pipeline.fit() | ||
|
||
# predict | ||
# deploy required components | ||
pipeline.deploy_component([data_transform_0, | ||
feature_imputation_0]) | ||
|
||
predict_pipeline = PipeLine() | ||
# add data reader onto predict pipeline | ||
predict_pipeline.add_component(reader_0) | ||
# add selected components from train pipeline onto predict pipeline | ||
# specify data source | ||
predict_pipeline.add_component( | ||
pipeline, data=Data( | ||
predict_input={ | ||
pipeline.data_transform_0.input.data: reader_0.output.data})) | ||
# run predict model | ||
predict_pipeline.predict() | ||
|
||
|
||
if __name__ == "__main__": | ||
parser = argparse.ArgumentParser("PIPELINE DEMO") | ||
parser.add_argument("-config", type=str, | ||
help="config file") | ||
args = parser.parse_args() | ||
if args.config is not None: | ||
main(args.config) | ||
else: | ||
main() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,80 @@ | ||
# | ||
# Copyright 2019 The FATE Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# | ||
|
||
import argparse | ||
|
||
from pipeline.backend.pipeline import PipeLine | ||
from pipeline.component import DataTransform | ||
from pipeline.component import Reader | ||
from pipeline.component import Union | ||
from pipeline.interface import Data | ||
from pipeline.utils.tools import load_job_config | ||
|
||
|
||
def main(config="../../config.yaml", namespace=""): | ||
# obtain config | ||
if isinstance(config, str): | ||
config = load_job_config(config) | ||
parties = config.parties | ||
guest = parties.guest[0] | ||
|
||
guest_train_data = {"name": "motor_hetero_guest", "namespace": f"experiment{namespace}"} | ||
host_train_data = {"name": "motor_hetero_host", "namespace": f"experiment{namespace}"} | ||
|
||
pipeline = PipeLine().set_initiator(role='guest', party_id=guest).set_roles(guest=guest) | ||
|
||
reader_0 = Reader(name="reader_0") | ||
reader_0.get_party_instance(role='guest', party_id=guest).component_param(table=guest_train_data) | ||
|
||
reader_1 = Reader(name="reader_1") | ||
reader_1.get_party_instance(role='guest', party_id=guest).component_param(table=host_train_data) | ||
|
||
data_transform_0 = DataTransform(name="data_transform_0") | ||
data_transform_1 = DataTransform(name="data_transform_1") | ||
|
||
data_transform_0.get_party_instance( | ||
role='guest', party_id=guest).component_param( | ||
with_label=True, output_format="dense", label_name="motor_speed", label_type="float") | ||
|
||
data_transform_1.get_party_instance( | ||
role='guest', party_id=guest).component_param( | ||
with_label=False, output_format="dense") | ||
|
||
union_0 = Union(name="union_0", axis=1) | ||
|
||
pipeline.add_component(reader_0) | ||
pipeline.add_component(reader_1) | ||
pipeline.add_component(data_transform_0, data=Data(data=reader_0.output.data)) | ||
pipeline.add_component( | ||
data_transform_1, data=Data( | ||
data=reader_1.output.data)) | ||
|
||
pipeline.add_component(union_0, data=Data(data=[data_transform_0.output.data, data_transform_1.output.data])) | ||
|
||
pipeline.compile() | ||
|
||
pipeline.fit() | ||
|
||
|
||
if __name__ == "__main__": | ||
parser = argparse.ArgumentParser("PIPELINE DEMO") | ||
parser.add_argument("-config", type=str, | ||
help="config file") | ||
args = parser.parse_args() | ||
if args.config is not None: | ||
main(args.config) | ||
else: | ||
main() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.