Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

2024 #53

Merged
merged 13 commits into from
Apr 13, 2024
Merged

2024 #53

Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 4 additions & 4 deletions .github/workflows/keras_tuner_stable.yml
Original file line number Diff line number Diff line change
Expand Up @@ -12,10 +12,10 @@ jobs:
fail-fast: false
matrix:
config:
- { os: macOS-latest, tf: '2.13.0', keras-tuner: '1.3.5'}
- { os: windows-latest, tf: '2.13.0', keras-tuner: '1.3.5'}
- { os: windows-latest, tf: 'nightly', keras-tuner: '1.3.5'}
- { os: macOS-latest, tf: 'nightly', keras-tuner: '1.3.5'}
- { os: macOS-latest, tf: '2.16.1', keras-tuner: '1.4.7'}
- { os: windows-latest, tf: '2.16.1', keras-tuner: '1.4.7'}
- { os: windows-latest, tf: 'nightly', keras-tuner: '1.4.7'}
- { os: macOS-latest, tf: 'nightly', keras-tuner: '1.4.7'}
env:
R_REMOTES_NO_ERRORS_FROM_WARNINGS: true
TF_VERSION: ${{ matrix.config.tf }}
Expand Down
6 changes: 3 additions & 3 deletions DESCRIPTION
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
Package: kerastuneR
Type: Package
Title: Interface to 'Keras Tuner'
Version: 0.1.0.6
Version: 0.1.0.7
Authors@R: c(
person("Turgut", "Abdullayev", role = c("aut", "cre"),
email = "[email protected]"),
Expand All @@ -20,7 +20,7 @@ BugReports: https://github.com/EagerAI/kerastuneR/issues/
SystemRequirements: TensorFlow >= 2.0 (https://www.tensorflow.org/)
Encoding: UTF-8
LazyData: true
RoxygenNote: 7.2.3
RoxygenNote: 7.3.1
Imports:
reticulate,
tensorflow,
Expand All @@ -35,7 +35,7 @@ Imports:
crayon,
magick
Suggests:
keras,
keras3,
knitr,
tfdatasets,
testthat,
Expand Down
2 changes: 1 addition & 1 deletion R/install.R
Original file line number Diff line number Diff line change
Expand Up @@ -21,7 +21,7 @@ install_kerastuner <- function(version = NULL, ..., bayesian = TRUE, restart_ses


if (is.null(version) & !from_git) {
module_string <- paste0("keras-tuner==", '1.3.5')
module_string <- paste0("keras-tuner==", '1.4.7')
} else if (!is.null(version)) {
module_string <- paste0("keras-tuner==", version)
} else if (isTRUE(from_git)) {
Expand Down
3 changes: 2 additions & 1 deletion R/random_search.R
Original file line number Diff line number Diff line change
Expand Up @@ -78,7 +78,8 @@ RandomSearch = function(hypermodel, objective, max_trials, seed = NULL,
if(is.null(hyperparameters))
args$hyperparameters <- NULL


if(!is.null(args$executions_per_trial))
args$executions_per_trial <- as.integer(args$executions_per_trial)

do.call(kerastuner$tuners$RandomSearch, args)

Expand Down
2 changes: 1 addition & 1 deletion README.md
Original file line number Diff line number Diff line change
Expand Up @@ -64,7 +64,7 @@ y_data2 <- ifelse(runif(50,0,1) > 0.6, 1L,0L) %>% as.matrix()
This function returns a compiled model.

```
library(keras)
library(keras3)
library(tensorflow)
library(kerastuneR)

Expand Down
2 changes: 1 addition & 1 deletion cran-comments.md
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,7 @@ This is a 4th submission of 'kerastuneR' 0.1.0.6

* Github actions: windows-latest
* Github actions: macOS-latest
* Github actions: ubuntu-16.04
* Github actions: ubuntu-20.04


## R CMD check results
Expand Down
2 changes: 1 addition & 1 deletion tests/testthat.R
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@
library(testthat)
library(tensorflow)
library(kerastuneR)
library(keras)
library(keras3)

test_check("kerastuneR")

3 changes: 1 addition & 2 deletions tests/testthat/test-BayesOptim.R
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,6 @@ source("utils.R")

test_succeeds("Can run Bayesian Optimization", {

library(keras)
library(tensorflow)
library(dplyr)
library(tfdatasets)
Expand Down Expand Up @@ -118,7 +117,7 @@ test_succeeds("Can run Bayesian Optimization", {

mnist_train$x = tf$cast(mnist_train$x, 'float32') / 255

mnist_train$x = k_reshape(mnist_train$x,shape = c(6e4,28,28,1))
mnist_train$x = tf$reshape(mnist_train$x,shape = c(6e4L,28L,28L,1L))
mnist_train$y = tf$dtypes$cast(mnist_train$y, 'float32')

if (!Sys.info()[1] %in% 'Windows') {
Expand Down
67 changes: 32 additions & 35 deletions tests/testthat/test-MNIST-conv.R
Original file line number Diff line number Diff line change
Expand Up @@ -3,44 +3,50 @@ context("build(hp) - MNIST")
source("utils.R")

test_succeeds("Can run hyper_class", {
library(keras)
library(dplyr)
library(tfdatasets)
library(kerastuneR)

conv_build_model = function(hp) {
'Builds a convolutional model.'
inputs = tf$keras$Input(shape=list(28L, 28L, 1L))
conv_build_model <- function(hp) {
inputs <- tf$keras$Input(shape = list(28L, 28L, 1L))
x <- inputs

x = inputs

for (i in 1:hp$Int('conv_layers', 1L, 3L, default=3L)) {
x = tf$keras$layers$Conv2D(filters = hp$Int(paste('filters_', i, sep = ''), 4L, 32L, step=4L, default=8L),
kernel_size = hp$Int(paste('kernel_size_', i, sep = ''), 3L, 5L),
activation ='relu',
padding='same')(x)
if (hp$Choice(paste('pooling', i, sep = ''), c('max', 'avg')) == 'max') {
x = tf$keras$layers$MaxPooling2D()(x)
for (i in 1:hp$Int('conv_layers', 1L, 3L, default = 3L)) {
x <- tf$keras$layers$Conv2D(
filters = hp$Int(paste('filters_', i, sep = ''), 4L, 32L, step = 4L, default = 8L),
kernel_size = hp$Int(paste('kernel_size_', i, sep = ''), 3L, 5L),
activation = 'relu',
padding = 'same'
)(x)

pool_type <- hp$Choice(paste('pooling', i, sep = ''), c('max', 'avg'))
if (pool_type == 'max') {
x <- tf$keras$layers$MaxPooling2D(pool_size = c(2L, 2))(x) # Adding pool_size argument
} else {
x = tf$keras$layers$AveragePooling2D()(x)
x <- tf$keras$layers$AveragePooling2D(pool_size = c(2L, 2))(x) # Adding pool_size argument
}
x = tf$keras$layers$BatchNormalization()(x)
x = tf$keras$layers$ReLU()(x)

x <- tf$keras$layers$BatchNormalization()(x)
x <- tf$keras$layers$ReLU()(x)
}
if (hp$Choice('global_pooling', c('max', 'avg')) == 'max') {
x = tf$keras$layers$GlobalMaxPool2D()(x)

global_pooling_type <- hp$Choice('global_pooling', c('max', 'avg'))
if (global_pooling_type == 'max') {
x <- tf$keras$layers$GlobalMaxPool2D()(x)
} else {
x = tf$keras$layers$GlobalAveragePooling2D()(x)
x <- tf$keras$layers$GlobalAveragePooling2D()(x)
}

outputs = tf$keras$layers$Dense(10L, activation='softmax')(x)
model = tf$keras$Model(inputs, outputs)
optimizer = hp$Choice('optimizer', c('adam', 'sgd'))
model %>% compile(optimizer, loss='sparse_categorical_crossentropy', metrics='accuracy')
outputs <- tf$keras$layers$Dense(10L, activation = 'softmax')(x)
model <- tf$keras$Model(inputs, outputs)

optimizer <- hp$Choice('optimizer', c('adam', 'sgd'))
model %>% compile(optimizer, loss = 'sparse_categorical_crossentropy', metrics = 'accuracy')

return(model)
}


testthat::expect_length(class(Hyperband(
hypermodel = conv_build_model,
objective='val_accuracy',
Expand All @@ -51,14 +57,6 @@ test_succeeds("Can run hyper_class", {
project_name = 'mnist')),5)


testthat::expect_match(Hyperband(
hypermodel = conv_build_model,
objective = 'val_accuracy',
max_epochs = 1,
factor = 2,
hyperband_iterations = 1,
directory = 'results_dir',
project_name = 'mnist') %>% capture.output(), 'keras_tuner.tuners.hyperband.Hyperband')

main = function() {
tuner = Hyperband(
Expand All @@ -74,8 +72,8 @@ test_succeeds("Can run hyper_class", {
c(mnist_train, mnist_test) %<-% mnist_data
rm(mnist_data)

mnist_train$x = k_reshape(mnist_train$x,shape = c(6e4,28,28,1))
mnist_test$x = k_reshape(mnist_test$x,shape = c(1e4,28,28,1))
mnist_train$x = tf$reshape(mnist_train$x,shape = c(6e4L,28L,28L,1L))
mnist_test$x = tf$reshape(mnist_test$x,shape = c(1e4L,28L,28L,1L))

mnist_train = tensor_slices_dataset(list(tf$dtypes$cast(mnist_train$x, 'float32') / 255., mnist_train$y)) %>%
dataset_shuffle(1e3) %>% dataset_batch(1e2) %>% dataset_repeat()
Expand All @@ -88,8 +86,7 @@ test_succeeds("Can run hyper_class", {
steps_per_epoch=600,
validation_data=mnist_test,
validation_steps=100,
epochs=1,
callbacks=c(tf$keras$callbacks$EarlyStopping('val_accuracy'))
epochs=1
)
}
})
Expand Down
3 changes: 1 addition & 2 deletions tests/testthat/test-build.R
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,6 @@ context("build(hp)")
source("utils.R")

test_succeeds("Can run build(hp) and plot_tuner()", {
library(keras)
library(tensorflow)
library(dplyr)
library(kerastuneR)
Expand Down Expand Up @@ -75,7 +74,7 @@ test_succeeds("Can run build(hp) and plot_tuner()", {
best_model = tuner2$hypermodel$build(best_hps)

# Train the best model
best_model %>% fit(X_train, y_train, epochs=50, validation_split=0.2)
best_model %>% fit(X_train, y_train, epochs=5, validation_split=0.2)

}
})
Expand Down
9 changes: 3 additions & 6 deletions tests/testthat/test-hp-space.R
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,7 @@ context('hp space')
source("utils.R")

test_succeeds("Can run hp-space", {
library(keras)
library(keras3)
library(dplyr)
library(kerastuneR)

Expand All @@ -14,16 +14,14 @@ test_succeeds("Can run hp-space", {
mnist_train$x = tf$dtypes$cast(mnist_train$x, 'float32') / 255.
mnist_test$x = tf$dtypes$cast(mnist_test$x, 'float32') / 255.

mnist_train$x = k_reshape(mnist_train$x,shape = c(6e4,28,28))
mnist_test$x = k_reshape(mnist_test$x,shape = c(1e4,28,28))
mnist_train$x = tf$reshape(mnist_train$x,shape = c(6e4L,28L,28L))
mnist_test$x = tf$reshape(mnist_test$x,shape = c(1e4L,28L,28L))


hp = HyperParameters()
hp$Choice('learning_rate',values =c(1e-1, 1e-3))
hp$Int('num_layers', 2L, 20L)

testthat::expect_match(capture.output(hp),'keras_tuner.engine.hyperparameters.hyperparameters.HyperParameters')


mnist_model = function(hp) {

Expand Down Expand Up @@ -55,7 +53,6 @@ test_succeeds("Can run hp-space", {
validation_split=0.2,
epochs=1)

testthat::expect_match(capture.output(tuner),'keras_tuner.tuners.randomsearch.RandomSearch')
})


Expand Down
1 change: 0 additions & 1 deletion tests/testthat/test-hyper_class.R
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,6 @@ context("build(hp) - Hyperclass")
source("utils.R")

test_succeeds("Can run hyper_class", {
library(keras)
library(tensorflow)
library(dplyr)
library(kerastuneR)
Expand Down
4 changes: 1 addition & 3 deletions tests/testthat/test-resnet.R
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,7 @@ context("build(hp) - ResNet")
source("utils.R")

test_succeeds("Can run hyper_class", {
library(keras)

library(dplyr)
library(kerastuneR)

Expand All @@ -12,7 +12,6 @@ test_succeeds("Can run hyper_class", {
hypermodel = HyperResNet(input_shape = list(300L, 300L, 3L), classes = 10L)
hypermodel2 = HyperXception(input_shape = list(300L, 300L, 3L), classes = 10L)

testthat::expect_match(hypermodel %>% capture.output(),'keras_tuner.applications.resnet.HyperResNet')

tuner = Hyperband(
hypermodel = hypermodel,
Expand All @@ -21,7 +20,6 @@ test_succeeds("Can run hyper_class", {
directory = 'my_dir',
project_name='helloworld')

testthat::expect_match(tuner %>% capture.output(),'keras_tuner.tuners.hyperband.Hyperband')

train_data = cifar$train$x[1:30,1:32,1:32,1:3]
test_data = cifar$train$y[1:30,1] %>% as.matrix()
Expand Down
Loading
Loading