Skip to content

Dorjderem2002/Olymbits-MCTS

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

14 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

EXAMPLE USE AS LIBRARY

import random
from olymbits import Olymbits


env = Olymbits()

while not env.is_terminal():
    possible_moves = env.possible_moves()
    env.take_action(random.choice(possible_moves))

print(env.reward())

LIBRARY INTERFACE

is_terminal() -> bool
possible_moves() -> List[str]
take_action() -> None
get_state() -> List
get_race_state() -> Race
get_archery_state() -> Archery
get_dive_state() -> Dive
reward() -> Dict

RUN

python run.py

PERFORMANCE (Higher the better)

----------HURDLE----------

MCTS: 0.9485294117647058

RANDOM: 0.5201612903225806

RIGHT: 0.5657894736842105

----------ARCHERY----------

OPTIMAL: 0.999375

GREEDY: 0.98575

MCTS: 0.792625

RANDOM: 0.326625

----------DIVE----------

OPTIMAL: 1

MCTS: 0.35

RANDOM: 0.029

About

Olymbits bot programming challenge using MCTS

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published