-
Notifications
You must be signed in to change notification settings - Fork 10
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
505cefd
commit a74304f
Showing
1 changed file
with
153 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,153 @@ | ||
import time | ||
import traceback | ||
from pathlib import Path | ||
import numpy as np | ||
from hooknet.configuration.config import create_hooknet | ||
from hooknet.inference.utils import ( | ||
create_lock_file, | ||
create_output_folders, | ||
files_exists, | ||
get_files, | ||
release_lock_file, | ||
) | ||
from hooknet.model_torch import HookNet | ||
from hooknet.inference.writing import create_writers | ||
from tqdm import tqdm | ||
from wholeslidedata.iterators import create_batch_iterator | ||
from wholeslidedata.source.configuration.config import ( | ||
get_paths, | ||
insert_paths_into_config, | ||
) | ||
import torch | ||
|
||
|
||
def _execute_inference_single( | ||
iterator, | ||
model, | ||
image_path, | ||
files, | ||
output_folder, | ||
tmp_folder, | ||
): | ||
|
||
print("Init writers...") | ||
writers = create_writers( | ||
image_path=image_path, | ||
files=files, | ||
output_folder=output_folder, | ||
tmp_folder=tmp_folder, | ||
) | ||
|
||
if not writers: | ||
print(f"Nothing to process for image {image_path}") | ||
return | ||
|
||
prediction_times = [] | ||
batch_times = [] | ||
print("Applying...") | ||
index = 0 | ||
batch_time = -1 | ||
for x_batch, y_batch, info in tqdm(iterator): | ||
if index > 0: | ||
batch_times.append(time.time()-batch_time) | ||
prediction_time = time.time() | ||
predictions = model(*x_batch) | ||
print(predictions.shape) | ||
print(y_batch.shape) | ||
if index > 0: | ||
prediction_times.append(time.time()-prediction_time) | ||
|
||
for idx, prediction in enumerate(predictions): | ||
point = info["sample_references"][idx]["point"] | ||
c, r = ( | ||
point.x - 70 // 4, # 70 is model_outputshape | ||
point.y - 70 // 4, | ||
) | ||
|
||
for writer in writers: | ||
writer.write_tile( | ||
tile=prediction, | ||
coordinates=(int(c), int(r)), | ||
mask=y_batch[idx][0], | ||
) | ||
index += 1 | ||
batch_time = time.time() | ||
|
||
print(f"average batch time: {np.mean(batch_times)}") | ||
print(f"average prediction time: {np.mean(prediction_times)}") | ||
|
||
# save predictions | ||
print("Saving...") | ||
for writer in writers: | ||
writer.save() | ||
|
||
|
||
def execute_inference( | ||
user_config, | ||
mode, | ||
model_name, | ||
output_folder, | ||
tmp_folder, | ||
cpus, | ||
source_preset, | ||
heatmaps, | ||
): | ||
print("Create output folder") | ||
create_output_folders(tmp_folder=tmp_folder, output_folder=output_folder) | ||
model = torch.load('/data/pathology/projects/retraining_hooknet_breast/torch_model/last_model.h5') | ||
for image_path, annotation_path in get_paths(user_config, preset=source_preset): | ||
print(f"PROCESSING: {image_path}, with {annotation_path}....") | ||
|
||
lock_file_path = output_folder / (image_path.stem + f"{model_name}.lock") | ||
if lock_file_path.exists(): | ||
print("Lock file exists, skipping inference.") | ||
continue | ||
|
||
files = get_files( | ||
image_path=image_path, model_name=model_name, heatmaps=heatmaps | ||
) | ||
|
||
if files_exists(files=files, output_folder=output_folder): | ||
print(f"All output files already exist, skipping inference.") | ||
continue | ||
|
||
try: | ||
create_lock_file(lock_file_path=lock_file_path) | ||
|
||
# Create iterator | ||
print("Creating iterator...") | ||
user_config_dict = insert_paths_into_config( | ||
user_config, image_path, annotation_path | ||
) | ||
iterator = create_batch_iterator( | ||
mode=mode, | ||
user_config=user_config_dict["wholeslidedata"], | ||
presets=( | ||
"files", | ||
"slidingwindow", | ||
), | ||
cpus=cpus, | ||
number_of_batches=-1, | ||
search_paths=(str(Path(user_config).parent),), | ||
) | ||
with torch.no_grad(): | ||
model.eval() # Optional when not using Model Specific layer | ||
print("Run inference") | ||
_execute_inference_single( | ||
iterator=iterator, | ||
model=model, | ||
image_path=image_path, | ||
files=files, | ||
output_folder=output_folder, | ||
tmp_folder=tmp_folder, | ||
) | ||
print('Stopping iterator') | ||
iterator.stop() | ||
|
||
except Exception as e: | ||
print("Exception") | ||
print(e) | ||
print(traceback.format_exc()) | ||
finally: | ||
release_lock_file(lock_file_path=lock_file_path) | ||
print("--------------") |