Skip to content

DBO-DKFZ/GleasonXAI

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Gleason XAI:

Paper: arxiv

System Requirements

Software dependencies can be found in the conda-env.yml.

The Software was created and tested on a Linux system with a GPU.

Use

Set up:

  1. Create conda environment using the conda_env.yml with
    conda env create -f path/to/conda_env.yml
    conda activate GleasonXAI
    
  2. Set environment variables:
    • DATASET_LOCATION: location of the images and the dataframe containing the labels
    • EXPERIMENT_LOCATION: location for the log files during experiments
  3. Extract and add TissueMicroarray.com Data at DATASET_LOCATION / GleasonXAI / TMA / original
  4. Add label data (final_filtered_explanations_df.csv) and hierarchy mapping (label_remapping.json) at DATASET_LOCATION / GleasonXAI
  5. Extract and add directory containing model weigths at DATASET_LOCATION / GleasonXAI (with directory structure as is)
  6. With download_data.py, download and add the other datasets
  7. (if failed due to missing step 4) create the MicronCalibrated data using create_downscaled_dataset.py

ca. 15min (depending on download speed)


Use for single image prediction:

  1. adjust paths in single_prediction.ipynb
  2. run the notebook

ca. 2min


Use for generating paper visualization:

  1. run test.py to create predictions on the test set (at least for models in GleasonFinal2/label_level1/SoftDiceBalanced-{i}/version_0/).
  2. run evaluate_paper_results.ipynb to create the visualizations and figures of the paper.

About

Explainable Gleason pattern prediction.

Resources

License

Stars

Watchers

Forks