Skip to content

COMP6258-Reproducibility-Challenge/COMP6258-Encoding-Recurrence-into-Transformers

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

31 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Reproducibility results from the paper: Encoding Recurrence into Transformers (https://openreview.net/pdf?id=7YfHla7IxBJ)

Experiments reproduced:

  • Informer and RSA-Informer on ETT and weather datasets for time series forecasting (rsa-Informer)
  • Transformer-xl and RSA-Transformer-xl on Enwik8 and Text8 for natural language modelling (rsa-transformer-xl)

Main changes made:

  • rsa-Informer/models/attn_rsa.py self attention mechanism updated with REM module
  • rsa-Informer/models/rem.py created to reimplement the REM module
  • rsa-transformer-xl/pytorch/rem.py created to reimplement the REM module (no truncation)
  • rsa-transformer-xl/pytorch/mem_transformer.py create RSA versions of attention modules and decoder module
  • rsa-transformer-xl/pytorch/train.py add necessary arguments inluding additional attention type 4: original transformer-xl with RSA

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •  

Languages