Skip to content

Commit

Permalink
Optimize chained hyperslab selection.
Browse files Browse the repository at this point in the history
A common pattern for creating semi-unstructured selection is to use many
(small) RegularHyperSlab and chain them:

```
HyperSlab hyperslab;
for(auto slab : regular_hyper_slabs) {
  hyperslab |= slab;
}
```

This eventually triggers calling:
```
for(auto slab : regular_hyper_slabs) {
  auto [offset, stride, counts, blocks] = slab;
  H5Sselect_hyperslab(space_id, offset, stride, counts, block);
}
```

Measurements show that this has runtime that's quadratic in the number
of regular hyper slabs. This starts becoming prohibitive at 10k - 40k
slabs.

We noticed that `H5Scombine_select` does not suffer from the same
performance issue. This allows us to optimize (long) chain of `Op::Or`
using divide and conquer.

The current implementation only optimizes streaks of `Op::Or`.
  • Loading branch information
1uc committed Jul 25, 2024
1 parent 40d2159 commit bb47941
Show file tree
Hide file tree
Showing 3 changed files with 187 additions and 14 deletions.
122 changes: 108 additions & 14 deletions include/highfive/bits/H5Slice_traits.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -162,20 +162,7 @@ class HyperSlab {
}

DataSpace apply(const DataSpace& space_) const {
auto space = space_.clone();
for (const auto& sel: selects) {
if (sel.op == Op::None) {
detail::h5s_select_none(space.getId());
} else {
detail::h5s_select_hyperslab(space.getId(),
convert(sel.op),
sel.offset.empty() ? nullptr : sel.offset.data(),
sel.stride.empty() ? nullptr : sel.stride.data(),
sel.count.empty() ? nullptr : sel.count.data(),
sel.block.empty() ? nullptr : sel.block.data());
}
}
return space;
return apply_impl(space_);
}

private:
Expand Down Expand Up @@ -229,6 +216,113 @@ class HyperSlab {
};

std::vector<Select_> selects;

protected:
DataSpace select_none(const DataSpace& outer_space) const {
auto space = outer_space.clone();
detail::h5s_select_none(space.getId());
return space;
}

void select_hyperslab(DataSpace& space, const Select_& sel) const {
detail::h5s_select_hyperslab(space.getId(),
convert(sel.op),
sel.offset.empty() ? nullptr : sel.offset.data(),
sel.stride.empty() ? nullptr : sel.stride.data(),
sel.count.empty() ? nullptr : sel.count.data(),
sel.block.empty() ? nullptr : sel.block.data());
}

#if H5_VERSION_GE(1, 10, 6)
/// The length of a stream of `Op::Or` starting at `begin`.
size_t detect_streak(Select_ const* begin, Select_ const* end, Op op) const {
assert(op == Op::Or);
auto it = std::find_if(begin, end, [op](const Select_& sel) { return sel.op != op; });
return static_cast<size_t>(it - begin);
}

DataSpace combine_selections(const DataSpace& left_space,
Op op,
const DataSpace& right_space) const {
return detail::make_data_space(
H5Scombine_select(left_space.getId(), convert(op), right_space.getId()));
}

/// Reduce a sequence of `Op::Or` efficiently.
///
/// The issue is that `H5Sselect_hyperslab` runs in time that linear of the
/// number of block in the existing selection. Therefore, a loop that adds
/// slab-by-slab has quadratic runtime in the number of slabs.
///
/// Fortunately, `H5Scombine_select` doesn't suffer from the same problem.
/// However, it's only available in 1.10.6 and newer.
///
/// The solution is to use divide-and-conquer to reduce (long) streaks of
/// `Op::Or` in what seems to be log-linear time.
DataSpace reduce_streak(const DataSpace& outer_space,
Select_ const* begin,
Select_ const* end,
Op op) const {
assert(op == Op::Or);

if (begin == end) {
throw std::runtime_error("Broken logic in 'DataSpace::reduce_streak'.");
}

std::ptrdiff_t distance = end - begin;
if (distance == 1) {
auto space = select_none(outer_space);
select_hyperslab(space, *begin);
return space;
}

Select_ const* mid = begin + distance / 2;
auto right_space = reduce_streak(outer_space, begin, mid, op);
auto left_space = reduce_streak(outer_space, mid, end, op);

return combine_selections(left_space, op, right_space);
}

DataSpace apply_impl(const DataSpace& space_) const {
auto space = space_.clone();
auto n_selects = selects.size();
for (size_t i = 0; i < n_selects; ++i) {
auto begin = selects.data() + i;
auto end = selects.data() + n_selects;

auto n_ors = detect_streak(begin, end, Op::Or);

if (n_ors > 1) {
auto right_space = reduce_streak(space_, begin, begin + n_ors, Op::Or);
// Since HDF5 doesn't allow `combine_selections` with a None
// selection, we need to avoid the issue:
if (detail::h5s_get_select_type(space.getId()) == H5S_SEL_NONE) {
space = right_space;
} else {
space = combine_selections(space, Op::Or, right_space);
}
i += n_ors - 1;
} else if (selects[i].op == Op::None) {
detail::h5s_select_none(space.getId());
} else {
select_hyperslab(space, selects[i]);
}
}
return space;
}
#else
DataSpace apply_impl(const DataSpace& space_) const {
auto space = space_.clone();
for (const auto& sel: selects) {
if (sel.op == Op::None) {
detail::h5s_select_none(space.getId());
} else {
select_hyperslab(space, sel);
}
}
return space;
}
#endif
};

///
Expand Down
21 changes: 21 additions & 0 deletions include/highfive/bits/h5s_wrapper.hpp
Original file line number Diff line number Diff line change
@@ -1,5 +1,6 @@
#pragma once

#include <H5Ipublic.h>
#include <H5Spublic.h>
namespace HighFive {
namespace detail {
Expand Down Expand Up @@ -110,6 +111,26 @@ inline H5S_class_t h5s_get_simple_extent_type(hid_t space_id) {
return cls;
}

inline H5S_sel_type h5s_get_select_type(hid_t space_id) {
H5S_sel_type type = H5Sget_select_type(space_id);
if (type < 0) {
HDF5ErrMapper::ToException<DataSpaceException>("Unable to get type of selection.");
}

return type;
}

#if H5_VERSION_GE(1, 10, 6)
hid_t h5s_combine_select(hid_t space1_id, H5S_seloper_t op, hid_t space2_id) {
auto space_id = H5Scombine_select(space1_id, op, space2_id);
if (space_id == H5I_INVALID_HID) {
HDF5ErrMapper::ToException<DataSpaceException>("Unable to combine two selections.");
}

return space_id;
}
#endif


} // namespace detail
} // namespace HighFive
58 changes: 58 additions & 0 deletions tests/unit/test_high_five_selection.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -25,6 +25,7 @@

#include <highfive/highfive.hpp>
#include "tests_high_five.hpp"
#include "data_generator.hpp"

using namespace HighFive;
using Catch::Matchers::Equals;
Expand Down Expand Up @@ -534,3 +535,60 @@ void irregularHyperSlabSelectionWriteTest() {
TEMPLATE_LIST_TEST_CASE("irregularHyperSlabSelectionWrite", "[template]", std::tuple<int>) {
irregularHyperSlabSelectionWriteTest<TestType>();
}

TEST_CASE("select_multiple_ors", "[hyperslab]") {
size_t n = 100, m = 20;
size_t nsel = 30;
auto x = testing::DataGenerator<std::vector<std::vector<int>>>::create({n, m});

auto file = File("select_multiple_ors.h5", File::Truncate);
auto dset = file.createDataSet("x", x);

std::vector<std::array<size_t, 2>> indices;
auto hyperslab = HyperSlab();
for (size_t i = 0; i < nsel; ++i) {
std::vector<size_t> offsets{i, i % 10};
std::vector<size_t> counts{1, 3};
hyperslab |= RegularHyperSlab(offsets, counts);

for (size_t k = 0; k < counts[1]; ++k) {
indices.push_back({offsets[0], offsets[1] + k});
}
}

SECTION("Pure Or Chain") {
auto selected = dset.select(hyperslab).read<std::vector<int>>();
REQUIRE(selected.size() == indices.size());
for (size_t k = 0; k < selected.size(); ++k) {
size_t i = indices[k][0];
size_t j = indices[k][1];
REQUIRE(selected[k] == x[i][j]);
}
}

SECTION("Or Chain And Slab") {
std::cout << " ................... " << std::endl;
std::vector<hsize_t> offsets{5, 2};
std::vector<hsize_t> counts{85, 12};

std::vector<std::array<size_t, 2>> selected_indices;
for (const auto ij: indices) {
std::array<size_t, 2> ij_max = {offsets[0] + counts[0], offsets[1] + counts[1]};

if (offsets[0] <= ij[0] && ij[0] < ij_max[0] && offsets[1] <= ij[1] &&
ij[1] < ij_max[1]) {
selected_indices.push_back(ij);
}
}

hyperslab &= RegularHyperSlab(offsets, counts);

auto selected = dset.select(hyperslab).read<std::vector<int>>();
REQUIRE(selected.size() == selected_indices.size());
for (size_t k = 0; k < selected.size(); ++k) {
size_t i = selected_indices[k][0];
size_t j = selected_indices[k][1];
REQUIRE(selected[k] == x[i][j]);
}
}
}

0 comments on commit bb47941

Please sign in to comment.