Skip to content

Commit

Permalink
Day-8_SUMMER_TRAINING_K-MEANS/IMAGE/VEDIO 😎🥰
Browse files Browse the repository at this point in the history
  • Loading branch information
BlockNotes-4515 authored Jul 13, 2024
1 parent 62a925c commit f66da7b
Show file tree
Hide file tree
Showing 9 changed files with 35,600 additions and 241 deletions.
1,776 changes: 1,776 additions & 0 deletions Day_8_DHRUVDHAYAL_AI_ML.ipynb

Large diffs are not rendered by default.

Binary file added Flower.jpeg
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
201 changes: 201 additions & 0 deletions Mall_Customers(Practice).csv
Original file line number Diff line number Diff line change
@@ -0,0 +1,201 @@
CustomerID,Gender,Age,Annual Income (k$),Spending Score (1-100)
1,Male,19,15,39
2,Male,21,15,81
3,Female,20,16,6
4,Female,23,16,77
5,Female,31,17,40
6,Female,22,17,76
7,Female,35,18,6
8,Female,23,18,94
9,Male,64,19,3
10,Female,30,19,72
11,Male,67,19,14
12,Female,35,19,99
13,Female,58,20,15
14,Female,24,20,77
15,Male,37,20,13
16,Male,22,20,79
17,Female,35,21,35
18,Male,20,21,66
19,Male,52,23,29
20,Female,35,23,98
21,Male,35,24,35
22,Male,25,24,73
23,Female,46,25,5
24,Male,31,25,73
25,Female,54,28,14
26,Male,29,28,82
27,Female,45,28,32
28,Male,35,28,61
29,Female,40,29,31
30,Female,23,29,87
31,Male,60,30,4
32,Female,21,30,73
33,Male,53,33,4
34,Male,18,33,92
35,Female,49,33,14
36,Female,21,33,81
37,Female,42,34,17
38,Female,30,34,73
39,Female,36,37,26
40,Female,20,37,75
41,Female,65,38,35
42,Male,24,38,92
43,Male,48,39,36
44,Female,31,39,61
45,Female,49,39,28
46,Female,24,39,65
47,Female,50,40,55
48,Female,27,40,47
49,Female,29,40,42
50,Female,31,40,42
51,Female,49,42,52
52,Male,33,42,60
53,Female,31,43,54
54,Male,59,43,60
55,Female,50,43,45
56,Male,47,43,41
57,Female,51,44,50
58,Male,69,44,46
59,Female,27,46,51
60,Male,53,46,46
61,Male,70,46,56
62,Male,19,46,55
63,Female,67,47,52
64,Female,54,47,59
65,Male,63,48,51
66,Male,18,48,59
67,Female,43,48,50
68,Female,68,48,48
69,Male,19,48,59
70,Female,32,48,47
71,Male,70,49,55
72,Female,47,49,42
73,Female,60,50,49
74,Female,60,50,56
75,Male,59,54,47
76,Male,26,54,54
77,Female,45,54,53
78,Male,40,54,48
79,Female,23,54,52
80,Female,49,54,42
81,Male,57,54,51
82,Male,38,54,55
83,Male,67,54,41
84,Female,46,54,44
85,Female,21,54,57
86,Male,48,54,46
87,Female,55,57,58
88,Female,22,57,55
89,Female,34,58,60
90,Female,50,58,46
91,Female,68,59,55
92,Male,18,59,41
93,Male,48,60,49
94,Female,40,60,40
95,Female,32,60,42
96,Male,24,60,52
97,Female,47,60,47
98,Female,27,60,50
99,Male,48,61,42
100,Male,20,61,49
101,Female,23,62,41
102,Female,49,62,48
103,Male,67,62,59
104,Male,26,62,55
105,Male,49,62,56
106,Female,21,62,42
107,Female,66,63,50
108,Male,54,63,46
109,Male,68,63,43
110,Male,66,63,48
111,Male,65,63,52
112,Female,19,63,54
113,Female,38,64,42
114,Male,19,64,46
115,Female,18,65,48
116,Female,19,65,50
117,Female,63,65,43
118,Female,49,65,59
119,Female,51,67,43
120,Female,50,67,57
121,Male,27,67,56
122,Female,38,67,40
123,Female,40,69,58
124,Male,39,69,91
125,Female,23,70,29
126,Female,31,70,77
127,Male,43,71,35
128,Male,40,71,95
129,Male,59,71,11
130,Male,38,71,75
131,Male,47,71,9
132,Male,39,71,75
133,Female,25,72,34
134,Female,31,72,71
135,Male,20,73,5
136,Female,29,73,88
137,Female,44,73,7
138,Male,32,73,73
139,Male,19,74,10
140,Female,35,74,72
141,Female,57,75,5
142,Male,32,75,93
143,Female,28,76,40
144,Female,32,76,87
145,Male,25,77,12
146,Male,28,77,97
147,Male,48,77,36
148,Female,32,77,74
149,Female,34,78,22
150,Male,34,78,90
151,Male,43,78,17
152,Male,39,78,88
153,Female,44,78,20
154,Female,38,78,76
155,Female,47,78,16
156,Female,27,78,89
157,Male,37,78,1
158,Female,30,78,78
159,Male,34,78,1
160,Female,30,78,73
161,Female,56,79,35
162,Female,29,79,83
163,Male,19,81,5
164,Female,31,81,93
165,Male,50,85,26
166,Female,36,85,75
167,Male,42,86,20
168,Female,33,86,95
169,Female,36,87,27
170,Male,32,87,63
171,Male,40,87,13
172,Male,28,87,75
173,Male,36,87,10
174,Male,36,87,92
175,Female,52,88,13
176,Female,30,88,86
177,Male,58,88,15
178,Male,27,88,69
179,Male,59,93,14
180,Male,35,93,90
181,Female,37,97,32
182,Female,32,97,86
183,Male,46,98,15
184,Female,29,98,88
185,Female,41,99,39
186,Male,30,99,97
187,Female,54,101,24
188,Male,28,101,68
189,Female,41,103,17
190,Female,36,103,85
191,Female,34,103,23
192,Female,32,103,69
193,Male,33,113,8
194,Female,38,113,91
195,Female,47,120,16
196,Female,35,120,79
197,Female,45,126,28
198,Male,32,126,74
199,Male,32,137,18
200,Male,30,137,83
Binary file not shown.
39 changes: 39 additions & 0 deletions day-8_face_recogn..py
Original file line number Diff line number Diff line change
@@ -0,0 +1,39 @@
import joblib
import cv2
import numpy as np
import matplotlib.pyplot as plt

cam = cv2.VideoCapture(1)
path = "E:\\Coding\\AIML\\haarcascade_frontalface_default.xml"
# face detector
face_detector = cv2.CascadeClassifier(path)

model_path = 'E:\\Coding\\AIML\\data_files\\orl_face_model_2.pkl'
face_model = joblib.load(model_path)

frame=True
count = 0
while(frame):
ret,im = cam.read()
im_new = cv2.resize(im, (512,512))
# covert the color (BGR) into grayscale
gray_im = cv2.cvtColor(im_new,cv2.COLOR_BGR2GRAY)
# run your classifier on the image
faces = face_detector.detectMultiScale(gray_im,scaleFactor=1.1,minNeighbors=10)
# disply the bounding box on all the faces
for (dx,dy,w,h) in faces:
cv2.rectangle(im_new, (dx,dy),(dx+w,dy+h),(0,0,255),2)
cropped_im = cv2.resize((gray_im[dy-20:(dy+h)+40,dx:(dx+w)]),(92,112))
lb = face_model.predict((cropped_im.reshape(1,-1)))
cv2.putText(im_new,'user: '+str(lb[0]),(dx-5,dy-5),cv2.FONT_HERSHEY_SIMPLEX,1,color=(255,0,0),thickness=2)


cv2.imshow('camera live feed', im_new)
# desired button of your choice
if cv2.waitKey(1) & 0xFF == ord('q'):
frame=False
break


cam.release()
cv2.destroyAllWindows()
Loading

0 comments on commit f66da7b

Please sign in to comment.