Skip to content

Commit

Permalink
Day-12_SUMMER_TRAINING_AI/ML
Browse files Browse the repository at this point in the history
  • Loading branch information
BlockNotes-4515 authored Jul 23, 2024
1 parent ab15dcd commit 3081917
Show file tree
Hide file tree
Showing 7 changed files with 8,078 additions and 0 deletions.
1,412 changes: 1,412 additions & 0 deletions Day-12_SUMMER_TRAINING_AIML/Day_12(2)_DHRUVDHAYAL_AI_ML (1).ipynb

Large diffs are not rendered by default.

1,267 changes: 1,267 additions & 0 deletions Day-12_SUMMER_TRAINING_AIML/Day_12_DHRUVDHAYAL_AI_ML.ipynb

Large diffs are not rendered by default.

1,648 changes: 1,648 additions & 0 deletions Day-12_SUMMER_TRAINING_AIML/GM_stock_2018_to_2024.csv

Large diffs are not rendered by default.

1,648 changes: 1,648 additions & 0 deletions Day-12_SUMMER_TRAINING_AIML/INFOSYS_stock_2018_to_2024 (1).csv

Large diffs are not rendered by default.

1,648 changes: 1,648 additions & 0 deletions Day-12_SUMMER_TRAINING_AIML/Tesla_stock_2018_to_2024.csv

Large diffs are not rendered by default.

188 changes: 188 additions & 0 deletions Day-12_SUMMER_TRAINING_AIML/day_12(2)_dhruvdhayal_ai_ml.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,188 @@
# -*- coding: utf-8 -*-
"""Day-12(2)_DHRUVDHAYAL_AI/ML.ipynb
Automatically generated by Colab.
Original file is located at
https://colab.research.google.com/drive/1apn7PkA9SqHSzEoTXF-adx5smv8OZBO1
#AUTOMOBILES - GM
"""

import pandas_datareader as pdr;
import datetime;
import pandas as pd;

#Showing the Values of the Date by setting up of the Data.
start=datetime.datetime(2018,1,1);
end=datetime.datetime(2024,7,20);

#Printing the Satrt and the end date.
print("\n 1. Starting Date of the Market: ",start);
print("\n 2. Ending Date of the Market: ",end);

stock=['GM'];
data=pdr.DataReader(stock,'stooq',str(start.date()),str(end.date())).stack('Symbols');
data.head();

#Reset the Values of the Index.
newData=data.reset_index();
newData.head();

newData.to_csv('/content/GM_stock_2018_to_2024.csv');

import matplotlib.pyplot as plt
# plot the close price fo the tesla stock
# load the csv file
GM_data = pd.read_csv('/content/GM_stock_2018_to_2024.csv')

# set the date as the index
GM_data.set_index('Date',inplace=True)
GM_data.head()
# and then sperate the close price
close_price = GM_data['Close']
# then plot the close price
close_price.plot(xlabel='Date',ylabel='Price',label='INFY',title='ICICI BANK Stock Price',figsize=(10,6))

import matplotlib.pyplot as plt
# plot the close price fo the tesla stock
# load the csv file
GM_data = pd.read_csv('/content/GM_stock_2018_to_2024.csv')

# set the date as the index
GM_data.set_index('Date',inplace=True)
GM_data.sort_index(ascending=True,inplace=True)
GM_data.head()
# and then sperate the close price
close_price = GM_data['Close']
# then plot the close price
close_price.plot(xlabel='Date',ylabel='Price',label='INFY',title='ICICI BANK Stock Price',figsize=(10,6))

#We, meed to show the values of the Subplot of data: 'SYMBOLS','CLOSE','HIGH','LOW','OPEN'.
import matplotlib.pyplot as plt
import seaborn as sns;
import numpy as np;

#Now, we have to subplot the values of the graph.
plt.figure(1,figsize=(6,6));

plt.subplot(3,1,1);
plt.plot(GM_data['Close'],label='Close Price');
plt.plot(GM_data['Open'],label='Open Price');
plt.legend();

plt.subplot(3,1,2);
plt.plot(GM_data['High'],label='High Price');
plt.plot(GM_data['Low'],label='Low Price');
plt.legend();

plt.subplot(3,1,3);
plt.plot(GM_data['Volume'],label='Volume');
plt.legend();

"""# >> Showing the Values of the Moving Averages. ON INFOSYS."""

#Showing the Movinf Averages.
GM_data.head();

#Now, Calculating the Values of the Moving Average.
# calulate the moving average
GM_data['SMA_20'] = GM_data['Close'].rolling(20).mean()
GM_data['SMA_50'] = GM_data['Close'].rolling(50).mean()
plt.figure(1)
plt.plot(GM_data['Close'],label='close price',linewidth=0.5)
plt.plot(GM_data['SMA_20'],label='20-SMA',linestyle='--')
plt.plot(GM_data['SMA_50'],label='50-SMA',linestyle='--')

plt.title('Moving average analysis')
plt.legend()

"""#Relative Strength Index."""

!pip install ta;

import ta;
GM_data['RSI'] = ta.momentum.RSIIndicator(GM_data['Close'], window=14);
GM_data.head();

# relative strength index
GM_data['RSI'] = ta.momentum.rsi(GM_data['Close'],window=14)

plt.figure(1,(12,6))
plt.plot(GM_data['RSI'],label='RSI',linewidth=0.5)
plt.axhline(70,linestyle='--',color='red',alpha=0.5)
plt.axhline(30,linestyle='--',color='red',alpha=0.5)
plt.title('RSI analysis')
plt.legend();
GM_data.tail();

# prompt: save the file in anther file

GM_data.to_csv('/content/GM_stock_2018_to_2024_updated.csv')

"""#Task-2:
--> 1. Consider the 3-Years of Infosys Data.
--> 2. 2018-2019-2020.
--> 3. Try and fit the 'ARIMA' and 'SARIMA'.
--> 4. FORELIST-> 1MONTH DATA.
--> 5. Super in Base of the Actual data.
"""

#Importing the Inbuilt Libraries.
from statsmodels.tsa import seasonal,arima_model;
import pandas as pd;
import numpy as np;

#Importing the Values of the Data.
data=pd.read_csv("/content/INFOSYS_stock_2018_to_2024 (1).csv");

#printing the Values of the data.
print("\n 1. Total Length of the Data: ",data.shape);
data.head();

#Information of the Data Values.
data.info();

#Importing the Inbuilt Libraries.
from statsmodels.tsa import seasonal,arima_model
import pandas as pd
import numpy as np

#Importing the Values of the Data.
data=pd.read_csv("/content/INFOSYS_stock_2018_to_2024 (1).csv")

# Check the column names of your DataFrame
print(data.columns)

#Convert the Month Column into Text into the DataTime.
# Adjust the column name below if it's different in your data
data["Date"] = pd.to_datetime(data["Date"]) # Replace 'Month' with the actual column name if needed
data.head()

data.head(50);

#Set the Month Column as the Index of the Pandas DataFiles.
data.set_index("Date",inplace=True);
data.head();

import matplotlib.pyplot as plt;
data['Close'].plot();

#Let's Create the ForeCaster.
import statsmodels.api as st;

# Assuming 'data' is your time series DataFrame
sarima_model = st.tsa.statespace.SARIMAX(data,order=(1,1,1),seasonal_order=(1,1,1,12))

#Train the Model.
sarima_model = sarima_model.fit()

# forecaste the value
value_for= sarima_model.forecast()
print(value_for)

Loading

0 comments on commit 3081917

Please sign in to comment.