Skip to content

Commit

Permalink
Added Day-(7,8) Successfully! 😎
Browse files Browse the repository at this point in the history
  • Loading branch information
BlockNotes-4515 authored Aug 2, 2024
1 parent f2e4945 commit 04072b0
Show file tree
Hide file tree
Showing 24 changed files with 140,068 additions and 0 deletions.
1,677 changes: 1,677 additions & 0 deletions DAY-7_SUMMER_TRAINING_AIML/Day_7_DHRUVDHAYAL_AI_ML (1).ipynb

Large diffs are not rendered by default.

638 changes: 638 additions & 0 deletions DAY-7_SUMMER_TRAINING_AIML/Day_7_DHRUVDHAYAL_AI_ML.ipynb

Large diffs are not rendered by default.

272 changes: 272 additions & 0 deletions DAY-7_SUMMER_TRAINING_AIML/day_7_dhruvdhayal_ai_ml (1).py
Original file line number Diff line number Diff line change
@@ -0,0 +1,272 @@
# -*- coding: utf-8 -*-
"""Day-7_DHRUVDHAYAL_AI/ML.ipynb
Automatically generated by Colab.
Original file is located at
https://colab.research.google.com/drive/1K26xv32kLaOTY8qLVpCVxFylXPeMLQx7
#Now, we directly acess the data values from the Drive Directly!
"""

from google.colab import drive;
drive.mount('/gdrive');

!unzip '/content/drive/MyDrive/Colab Notebooks/orl_face/orl_face.zip' -d '/content/drive/MyDrive/Colab Notebooks/orl_face'

#Now, Importing the Images data from the unzip files.
import matplotlib.pyplot as plt;
import matplotlib.image as mimg;
import numpy as np;
import pandas as pd;

#Now, we need to read the values of the Data from a Drive.
user_name=24; #Labels.
samples_no=6; #Define the Variable Sample_Numbers.
path='/content/drive/MyDrive/Colab Notebooks/orl_face/orl_face/u%d/%d.png'%(user_name,samples_no);

#Now, we need to read the data from images.
imag=mimg.imread(path);
print("\n 1. Type of the Image is: ",type(imag));
print("\n 2. Length of the Image is: ",imag.shape);
print("\n");

#Now, we need to plot the Image.
plt.figure(1,figsize=(5,10));
plt.imshow(imag,cmap='gray');
plt.axis("off");
plt.show();

#Now, convert 2-D Images it into 1-D Images by using the Flatten.
feat=imag.reshape(1,-1);
print("\n 1. Length of the Images: ",imag.shape);
print("\n 2. Length of the Features: ",feat.shape);
print("\n --> Range: ",imag.min()," - ",imag.max());

#Logic to acess all the samples of the User.
#Of the Valued Users.
total_sample=400;
user_name=26;
sample_no=6;
data=np.zeros((total_sample,imag.shape[0]*imag.shape[1]));
label=np.zeros((total_sample));
images=np.zeros((total_sample,imag.shape[0],imag.shape[1]));
index=-1;
for i in range(1,41,1):
for j in range(1,11,1):
index=index+1;
#acess any of the single image.
user_name=i;
sample_no=j;
path='/content/drive/MyDrive/Colab Notebooks/orl_face/orl_face/u%d/%d.png'%(user_name,sample_no);
#reading the Image.
im=mimg.imread(path);
data[index,:]=feat
label[index]=i
images[index,:,:]=im
print("user num ",i,'samp no',j,'processed...');

#Now, displaying the values of the Image.
plt.imshow(images[397,:,:],cmap='gray');
plt.axis('off');
plt.show();

"""#Now, we need to represent the values of the (5*5) Matrix."""

#Importing all the Built-in Libraries.
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt # Import matplotlib.pyplot

#Now, we need to show all the (5*5) Matrix Values.
plt.figure(1,figsize=(10,10));
for i in range(5):
for j in range(5):
num=np.random.randint(0,400);
samples=images[num,:,:];
la=label[num];
plt.subplot(5,5,i*5+j+1) # Use plt to access subplot
plt.imshow(samples,cmap='gray');
plt.axis('off');
plt.title(" "+str(int(la)));
#showing the Image (5*5) Matrix.
plt.show();

from sklearn import svm
import pandas as pd
X = data # Extract the data from the 'data' key
y =label # Use the target variable from the Iris dataset


# split the data into 70:30 ratio
Xtrain,Xtest,ytrain,ytest = model_selection.train_test_split(X,y,test_size=0.3,random_state=5)
print(Xtrain.shape,ytrain.shape)
print(Xtest.shape,ytest.shape)

ker = ['poly','linear','rbf']
c_value = [1,2,3]

# pre allocation of the result variable
result = np.zeros((len(ker),len(c_value)))
for i in range(len(ker)):
for j in range(len(c_value)):
# create the svm classifier
orl_svm_model = svm.SVC(kernel=ker[i],gamma='scale',C=c_value[j])

# train the model
orl_svm_model = orl_svm_model.fit(Xtrain,ytrain)

# predict the labels
ypred = orl_svm_model.predict(Xtest)

# accuracy
acc = metrics.accuracy_score(ypred,ytest)
#print("accuracy:", acc)
result[i,j]=acc
print(result)

ResultDF = pd.DataFrame(result,index=ker,columns=["C=1","C=2","C=3"])
ResultDF
print("\n Showing in the form of the Graphical Methods!");
ResultDF.plot(kind='bar',figsize=(4,4))

#Saving our trained model in the Google Drive.
#We, use the Joblib to save the models.
import joblib
# final best model
# kernel function - linear , C =1

orl_svm_model = svm.SVC(kernel='linear',gamma='scale',C=1)
# train the model
orl_svm_model = orl_svm_model.fit(Xtrain,ytrain)

# save the trained model
joblib.dump(orl_svm_model,'/content/drive/MyDrive/Colab Notebooks/orl_face_model.pkl')

#Show the random image from 1-10 , asked by the user to take as input form of parameter.
#Ask the user as ID to show that location image randomly.
import matplotlib.pyplot as plt;
import matplotlib.image as mimg;
import pandas as pd;
import numpy as np;

#Now, we simply ask from the User.
user_name=int(input("Enter the User ID: "));
sample_no=np.random.randint(8,10);
path='/content/drive/MyDrive/Colab Notebooks/orl_face/orl_face/u%d/%d.png'%(user_name,sample_no);

#Now, we need to show the value of the Image.
imag=mimg.imread(path);
print("\n");
plt.figure(1,figsize=(5,10));
plt.imshow(imag,cmap='gray');
plt.axis("off");
plt.title('Query Image');
plt.show();

#We, make the trained model and save in the drive by using the joblib.
from sklearn import datasets, svm, metrics, model_selection;
import joblib;
import numpy as np;
import pandas as pd;

feat=imag.reshape(1,-1);

#Set the value of the Path_model where, we have to store the model in pkl. file on Drive.
path_model='/content/drive/MyDrive/Colab Notebooks/orl_face_model.pkl';

#Train the Model by the help of Classifications.
face_model=joblib.load(path_model);

#predict the image model by datasets.
result=face_model.predict(feat);

print("Prediction: ",int(result[0]));

#set the location of the zip image file.
path='/content/drive/MyDrive/Colab Notebooks/orl_face/orl_face/u%d/%d.png'%(result[0],1);

im_pred = mimg.imread(path)

plt.figure(1,(8,5))
plt.subplot(1,2,1)
plt.imshow(im,cmap='gray')
plt.axis('off')
plt.title("Query image")

plt.subplot(1,2,2)
plt.imshow(im_pred,cmap='gray')
plt.axis('off')
plt.title("predicted user")

"""#Example of FP-(FALSE - POSITIVE), Very, Dangerous I check but I don't know where is the problem where all snippet is found to be correct, I refer to my friend's colab notebook for reviewing."""

import matplotlib.image as mimg
import matplotlib.pyplot as plt
import numpy as np

# load the query image
usrId = int(input("Enter the user number:"))
samp = np.random.randint(1,10) # selecting any random sample number
path = "/content/drive/MyDrive/Colab Notebooks/orl_face/orl_face/u%d/%d.png"%(usrId,samp)

im = mimg.imread(path)

plt.figure(1,(5,5))
plt.imshow(im,cmap='gray')
plt.axis('off')
plt.title("Query image")

import joblib
from sklearn import svm ,metrics
# calcualte the features of the query image
feat_query = im.reshape(1,-1)

# model path
path_model = '/content/drive/MyDrive/Colab Notebooks/orl_face_model.pkl';
# load the trained model
face_model = joblib.load(path_model)


# predict the id of the query image
id = face_model.predict(feat_query)
print("User id predicted is :",int(id[0]))


path = "/content/drive/MyDrive/Colab Notebooks/orl_face/orl_face/u%d/%d.png"%(id[0],1)

im_pred = mimg.imread(path)

plt.figure(1,(8,5))
plt.subplot(1,2,1)
plt.imshow(im,cmap='gray')
plt.axis('off')
plt.title("Query image")

plt.subplot(1,2,2)
plt.imshow(im_pred,cmap='gray')
plt.axis('off')
plt.title("predicted user")

"""#False-Positive!
#Now, working on Generating an Computer Applications to analyze the Brain Tumor Problem.
"""

#Now, unzip the tumor files.
!unzip '/content/drive/MyDrive/Colab Notebooks/orl_face/new_train-20240708T093236Z-001.zip' -d '/content/drive/MyDrive/Colab Notebooks'

#Finding the Tumor in the Brain with the White-Spot.
import matplotlib.pyplot as plt;
import matplotlib.image as mimg;
import numpy as np;
plt.figure(1,figsize=(10,10));
for i in range(1,62,1):
path='/content/drive/MyDrive/Colab Notebooks/new_train/d(%d).png'%(i);
imag=mimg.imread(path);
plt.subplot(8,8,i);
plt.imshow(imag,cmap='gray');
plt.title(i);
plt.tight_layout();
plt.axis("off");
#plt.show();
Loading

0 comments on commit 04072b0

Please sign in to comment.