Skip to content

Commit

Permalink
Cleanups
Browse files Browse the repository at this point in the history
  • Loading branch information
Blaisorblade committed Mar 23, 2020
1 parent 31a1a1c commit a6eedef
Showing 1 changed file with 52 additions and 87 deletions.
139 changes: 52 additions & 87 deletions theories/Dot/syn/dropSkips.v
Original file line number Diff line number Diff line change
Expand Up @@ -194,9 +194,12 @@ Proof.
induction Ki; rewrite /= ?fill_app /=; eauto with f_equal.
Qed. *)

Definition simpl_prim_step := (λ e1 e2, prim_step e1 () [] e2 () []).
Notation prim_steps := (rtc simpl_prim_step).

Theorem simulation_skiperase e1 e2 :
prim_step e1 () [] e2 () []
rtc (λ e1 e2, prim_step e1 () [] e2 () []) (erase_tm e1) (erase_tm e2).
simpl_prim_step e1 e2
prim_steps (erase_tm e1) (erase_tm e2).
Proof.
inversion 1 as [Ks ???? Hh%head_erase_sim]; simplify_eq/=.
rewrite !erase_ctxi_fill. induction Hh; [apply rtc_refl|eapply rtc_l, IHHh].
Expand All @@ -209,39 +212,11 @@ From D Require Import iris_extra.det_reduction.

Lemma simulation_skiperase' e1 σ1 κ e2 σ2 efs :
prim_step e1 σ1 κ e2 σ2 efs →
rtc (λ e1 e2, prim_step e1 () [] e2 () []) (erase_tm e1) (erase_tm e2).
prim_steps (erase_tm e1) (erase_tm e2).
Proof.
intros Hs; prim_step_inversion Hs.
destruct σ1; exact: simulation_skiperase.
Qed.

Theorem simulation_skiperase_erased_step {t1 t2 σ σ'} :
erased_step ([t1], σ) ([t2], σ') →
rtc erased_step ([erase_tm t1], σ) ([erase_tm t2], σ').
Proof.
rewrite erased_step_prim => /simulation_skiperase' Hstep; destruct σ, σ'.
eapply (rtc_congruence (λ t, ([t], ()))), Hstep => /= e1 e2 Hs.
apply erased_step_prim, Hs.
Qed.

Theorem simulation_skiperase_erased_steps {t1 t2 σ σ'} :
rtc erased_step ([t1], σ) ([t2], σ') →
rtc erased_step ([erase_tm t1], σ) ([erase_tm t2], σ').
Proof.
move => Hsteps.
dependent induction Hsteps; first done.
destruct y as [l σ'']; have ?: σ'' = σ by destruct σ, σ''; subst.
move: H (H) => [k Hstep] Hestep.
have [ti ?] := step_inversion Hstep; destruct_and!; simplify_eq.
etrans; first exact: (simulation_skiperase_erased_step Hestep).
exact: IHHsteps.
Qed.

Corollary simulation_skiperase_erased_steps_vl {t1 v2 σ σ'} :
rtc erased_step ([t1], σ) ([tv v2], σ') →
rtc erased_step ([erase_tm t1], σ) ([tv (erase_vl v2)], σ').
Proof. exact: (simulation_skiperase_erased_steps (t2 := tv v2)). Qed.

Lemma erased_step_inversion {t1 thp σ σ'} :
erased_step ([t1], σ) (thp, σ') →
∃ t2, thp = [t2] ∧ prim_step t1 σ [] t2 σ' [].
Expand All @@ -264,9 +239,6 @@ Proof.
by rewrite elem_of_list_singleton=>->.
Qed.

Definition simpl_prim_step := (λ e1 e2, prim_step e1 () [] e2 () []).
Notation prim_steps := (rtc simpl_prim_step).

Lemma erased_prim_steps e1 e2:
rtc erased_step ([e1], ()) ([e2], ()) ↔
prim_steps e1 e2.
Expand All @@ -279,6 +251,29 @@ Proof.
exists []; eauto.
Qed.

Theorem simulation_skip_erase_prim_steps t1 t2 :
prim_steps t1 t2 →
prim_steps (erase_tm t1) (erase_tm t2).
Proof.
intros Hsteps; dependent induction Hsteps; first done.
etrans; last done.
exact: simulation_skiperase'.
Qed.

Theorem simulation_skiperase_erased_steps {t1 t2 σ σ'} :
rtc erased_step ([t1], σ) ([t2], σ') →
rtc erased_step ([erase_tm t1], σ) ([erase_tm t2], σ').
Proof.
uniqueState; rewrite !erased_prim_steps.
exact: simulation_skip_erase_prim_steps.
Qed.

Corollary simulation_skiperase_erased_steps_vl {t1 v2 σ σ'} :
rtc erased_step ([t1], σ) ([tv v2], σ') →
rtc erased_step ([erase_tm t1], σ) ([tv (erase_vl v2)], σ').
Proof. exact: (simulation_skiperase_erased_steps (t2 := tv v2)). Qed.


Lemma fill_prim_steps Ks {eK1 eK2} :
prim_steps eK1 eK2 →
prim_steps (fill Ks eK1) (fill Ks eK2).
Expand Down Expand Up @@ -587,23 +582,23 @@ Qed. *)
Lemma safe_skiperase {e}:
safe e → safe (erase_tm e).
Proof.
rewrite /safe => Hsafe ee' thp [] [] Hereds Hin.
have {}Hereds := rtc_erased_step_inversion Hereds Hin.
have /erased_prim_steps Hereds' := Hereds.
destruct (prims_erase_sim_inv e _ Hereds') as [e' [Hreds%erased_prim_steps He]].
destruct (Hsafe e' [e'] () ()) as [Hv|Hr];
[done|by rewrite elem_of_list_singleton|left|]; simplify_eq/=.
rewrite /safe => Hsafe ee' /pure_steps_erased'.
destruct dummyState => /erased_prim_steps Hereds'.
destruct (prims_erase_sim_inv e _ Hereds') as [e' [Hreds %erased_prim_steps He]].

destruct (Hsafe e') as [Hv|Hr];
[by apply pure_steps_erased'; destruct dummyState | left|]; simplify_eq/=.
- destruct e'; try by [case (is_Some_None Hv)]; eauto.
- destruct Hr.
(* pose proof (Hsafe e' thp () ()). *)
(* pose proof (Hsafe e'). *)
(* destruct e; simplify_eq/=.
pose proof (simulation_skiperase_erased_steps Hred Hin) as Hst. *)
Abort.

Lemma safe_skiperase_inv {e}:
safe (erase_tm e) → safe e.
Proof.
rewrite /safe => Hsafe e' > Hred Hin.
(* rewrite /safe => Hsafe e' > Hred Hin.
pose proof (simulation_skiperase_erased_steps Hred Hin) as Hst.
edestruct Hsafe as [Hs|Hs]; [apply Hst|apply elem_of_list_here| |right].
- destruct e'; try by [case (is_Some_None Hs)]; first naive_solver.
Expand All @@ -615,7 +610,7 @@ Proof.
apply _.

naive_solver.
- eapply same_skel_reducible, Hs; exact: same_skel_symm_tm. *)
- eapply same_skel_reducible, Hs; exact: same_skel_symm_tm. *) *)
Abort.

From D.Dot Require Import skeleton_termination.
Expand All @@ -631,48 +626,34 @@ Proof.
exact: IHHr.
Qed.

Theorem rtc_erased_step_inversion'' {t1 σ σ' thp} :
(* Theorem rtc_erased_step_inversion'' {t1 σ σ' thp} :
rtc erased_step ([t1], σ) (thp, σ') →
∃ t2, thp = [t2].
Proof.
move=> Hs; have [t2' ?] := rtc_erased_step_inversion' Hs; subst; eauto.
Qed.
Qed. *)

Lemma rtc_erased_steps_det {e v thp}:
rtc erased_step ([e], ()) ([tv v], ()) →
rtc erased_step ([e], ()) (thp, ()) →
rtc erased_step (thp, ()) ([tv v], ()).
Proof.
rewrite erased_prim_steps => H1 H2.
destruct (rtc_erased_step_inversion'' H2) as [e']; simplify_eq.
destruct (rtc_erased_step_inversion' H2) as [e']; simplify_eq.
move: H2; rewrite !erased_prim_steps => H2.
exact: prim_steps_det.
Qed.


(* Lemma safe_skiperase1 {e1 v2 σ σ'}:
erased_step ([e1], σ) ([tv v2], σ') →
safe (erase_tm e1).
Proof.
destruct σ, σ'.
rewrite /safe => /simulation_skiperase_erased_step' /= Hsafe e' thp [] [] Hred Hin.
destruct (rtc_erased_step_inversion' Hred) as [e'' ?]; simplify_eq.
move: Hin; rewrite elem_of_list_singleton => ?; subst e''.
pose proof (rtc_erased_steps_det Hsafe Hred) as Hremaining.
destruct (rtc_inv _ _ Hremaining) as [|Hrem]; simplify_eq/=.
- left; eauto.
- right; destruct Hrem as [[thp []] [Hrred%erased_step_inversion _]].
hnf; naive_solver.
Qed. *)

Lemma safe_erase_to_val {e1 v2}:
prim_steps e1 (tv v2) →
safe (erase_tm e1).
Proof.
rewrite /safe => /erased_prim_steps /simulation_skiperase_erased_steps_vl'
/= Hsafe e' thp [] [] Hred Hin.
destruct (rtc_erased_step_inversion' Hred) as [e'' ?]; simplify_eq.
move: Hin; rewrite elem_of_list_singleton => ?; subst e''.
rewrite /safe => /erased_prim_steps /simulation_skiperase_erased_steps_vl
/= Hsafe e' /pure_steps_erased' Hred.
destruct dummyState.
(* destruct (rtc_erased_step_inversion' Hred) as [e'' ?]; simplify_eq.
move: Hin; rewrite elem_of_list_singleton => ?; subst e''. *)
pose proof (rtc_erased_steps_det Hsafe Hred) as Hremaining.
destruct (rtc_inv _ _ Hremaining) as [|Hrem]; simplify_eq/=.
- left; eauto.
Expand All @@ -684,12 +665,13 @@ Lemma safe_erase_diverging {e1}:
diverges' e1 →
safe (erase_tm e1).
Proof.
rewrite /safe /diverges' => /= Hdiv ee2 thp [] [] Hred Hin.
destruct (rtc_erased_step_inversion'' Hred) as [e'' ?]; simplify_eq.
have /erased_prim_steps Hereds := (rtc_erased_step_inversion Hred Hin).
move => {Hin Hred}.
rewrite /safe /diverges' => /= Hdiv ee2 /pure_steps_erased'.
case: dummyState => /erased_prim_steps Hereds'.
(* destruct (rtc_erased_step_inversion'' Hred) as [e'' ?]; simplify_eq.
have /erased_prim_steps Hereds := (rtc_erased_step_inversion Hred Hin). *)
(* move => {Hin Hred}. *)
(* %erased_prim_steps *)
destruct (prims_erase_sim_inv _ _ Hereds) as [e2 [Hreds He]]; subst.
destruct (prims_erase_sim_inv _ _ Hereds') as [e2 [Hreds He]]; subst.
have Hrede2 := Hdiv _ Hreds.
(* What now? *)
Admitted.
Expand Down Expand Up @@ -727,23 +709,6 @@ Proof.
exact: safe_erase_diverging.
Qed.

(*
Lemma safe_skiperase1 {e1 v2 σ σ'}:
erased_step ([e1], σ) ([tv v2], σ') →
safe (erase_tm e1).
Proof.
destruct σ, σ'.
rewrite /safe => /simulation_skiperase_erased_step' /= Hsafe e' thp [] [] Hred Hin.
destruct (rtc_erased_step_inversion Hred) as [e'' ?]; simplify_eq.
move: Hin; rewrite elem_of_list_singleton => ?; subst e''.
pose proof (rtc_erased_steps_det Hsafe Hred) as Hremaining.
destruct (rtc_inv _ _ Hremaining) as [|Hrem]; simplify_eq/=.
- left; eauto.
- right; destruct Hrem as [[thp []] [Hrred%erased_step_inversion _]].
hnf; naive_solver.
Qed. *)

(* Lemma fill_erase_expr {e e1 Ks} :
erase_tm e = fill Ks e1 →
∃ Ks' e1', Ks
Expand Down

0 comments on commit a6eedef

Please sign in to comment.