Skip to content

module__TEESTrain

Robert Bossy edited this page Jul 27, 2017 · 1 revision

#org.bibliome.alvisnlp.modules.tees.TEESTrain

Synopsis

Train a model that predict an Alvis relation with TEES Trainer

Description

org.bibliome.alvisnlp.modules.tees.TEESTrain executes the TEES training on Corpus and record the results in Relation. Param relationName sets the name of the binary relation to predict. relationRole1 and relationRole set the two roles of the relation. Params trainSetFeature, devSetFeature and testSetFeature give respectively the features key of the train, dev and test corpus. org.bibliome.alvisnlp.modules.tees.TEESTrain

Parameters

Optional

Type: OutputFile

Path to the directory where put the trained model

Optional

Type: String

Name of the layer containing the named entities

Optional

Type: MultiMapping

  	Give the schema of the relations to train i.e.
```xml

  	  <schema>
    <Lives_In>Bacteria,Location</Lives_In>
  	  </schema>
```

Optional

Type: InputDirectory

Path to tees home directory.

Optional

Type: Mapping

UNDOCUMENTED

Optional

Type: Mapping

UNDOCUMENTED

Default value: set

Type: String

UNDOCUMENTED

Default value: dev

Type: String

Feature key of the dev set corpus.

Default value: true

Type: Expression

UNDOCUMENTED

Default value: test-model

Type: String

give a name to the trained model

Default value: neType

Type: String

Name of the feature to access the type of the named entities

Default value: SPLIT-SENTENCES,NER

Type: String

Set the preprocessing steps to omit in the form of [SPLIT-SENTENCES][,NER][,PARSE][,FIND-HEADS]

Default value: pos

Type: String

UNDOCUMENTED

Default value: boolean:and(true, boolean:and(nav:layer:words(), nav:layer:sentences()))

Type: Expression

UNDOCUMENTED

Default value: sentences

Type: String

UNDOCUMENTED

Default value: test

Type: String

Feature key of the test set corpus.

Default value: words

Type: String

UNDOCUMENTED

Default value: train

Type: String

Feature key of the train set corpus.

Clone this wiki locally